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摘　 要:为了确保托卡马克实验的安全运行,对关键真空获取设备分子泵的可靠性评估至关重要。 然而,有限的退化数据导致

现有的预测方法准确性较低。 针对这一挑战,提出了一种基于时间序列生成对抗网络( TGAN)的分子泵退化数据生成方法,旨
在通过生成数据来扩充数据集,进而提高预测模型的准确性和可靠性。 该方法创新性地结合了 Transformer 网络和 TGAN,并通

过引入威布尔分布提高了生成数据的质量,再利用长短期记忆网络对生成的退化数据进行退化预测。 实验结果表明,TGAN-
Transformer 能有效生成满足分子泵退化预测需求的数据,显著提升了预测的准确性和可靠性,为分子泵的可靠性分析和安全运

行提供了可靠支持。 通过对比实验,TGAN-Transformer 在均方根误差(RMSE)指标上相较于生成对抗网络(GAN)、深度卷积生

成对抗网络(DCGAN)、递归条件生成对抗网络(RCGAN)、变分自编码器( VAE)和条件变分自编码器( CVAE)分别提升 51%、
48%

 

、36%、40%、30%;在平均绝对误差(MAE)指标上,分别提升 52%、49%、38%、42%、33%,证明了其在分子泵退化预测中的

有效性。 未来的研究可进一步优化生成网络结构,探索更多生成对抗网络的变种,以提高生成数据的多样性和真实性,从而进

一步提升退化预测的准确性和可靠性。
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Abstract:
 

To
 

ensure
 

the
 

safe
 

operation
 

of
 

Tokamak
 

experiments,
 

the
 

reliability
 

assessment
 

of
 

key
 

vacuum
 

acquisition
 

equipment,
 

specifically
 

molecular
 

pumps,
 

is
 

crucial.
 

However,
 

limited
 

degradation
 

data
 

has
 

resulted
 

in
 

low
 

accuracy
 

of
 

existing
 

predictive
 

methods.
 

To
 

address
 

this
 

challenge,
 

a
 

degradation
 

data
 

generation
 

method
 

for
 

molecular
 

pumps
 

based
 

on
 

time
 

series
 

generative
 

adversarial
 

networks
 

(TGAN)
 

has
 

been
 

proposed,
 

aimed
 

at
 

augmenting
 

the
 

dataset
 

through
 

generated
 

data
 

to
 

enhance
 

the
 

accuracy
 

and
 

reliability
 

of
 

predictive
 

models.
 

This
 

method
 

innovatively
 

combines
 

Transformer
 

networks
 

with
 

TGAN
 

and
 

improves
 

the
 

quality
 

of
 

the
 

generated
 

data
 

by
 

incorporating
 

Weibull
 

distribution.
 

Furthermore,
 

long
 

short-term
 

memory
 

networks
 

are
 

utilized
 

for
 

degradation
 

prediction
 

of
 

the
 

generated
 

data.
 

Experimental
 

results
 

demonstrate
 

that
 

TGAN-Transformer
 

can
 

effectively
 

generate
 

data
 

that
 

meets
 

the
 

needs
 

of
 

molecular
 

pump
 

degradation
 

prediction,
 

significantly
 

enhancing
 

prediction
 

accuracy
 

and
 

reliability,
 

thereby
 

providing
 

solid
 

support
 

for
 

the
 

reliability
 

analysis
 

and
 

safe
 

operation
 

of
 

molecular
 

pumps.
 

Through
 

comparative
 

experiments,
 

TGAN
 

Transformer
 

has
 

improved
 

RMSE
 

indicators
 

by
 

51%,
 

48%,
 

36%,
 

40%,
 

and
 

30%
 

compared
 

to
 

GAN,
 

DCGAN,
 

RCGAN,
 

VAE,
 

and
 

CVAE,
 

respectively.
 

On
 

the
 

MAE
 

index,
 

they
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increased
 

by
 

52%,
 

49%,
 

38%,
 

42%,
 

and
 

33%
 

respectively,
 

demonstrating
 

their
 

effectiveness
 

in
 

predicting
 

molecular
 

pump
 

degradation.
 

Future
 

research
 

may
 

further
 

optimize
 

the
 

structure
 

of
 

the
 

generation
 

network
 

and
 

explore
 

more
 

variants
 

of
 

generative
 

adversarial
 

networks
 

to
 

improve
 

the
 

diversity
 

and
 

authenticity
 

of
 

generated
 

data,
 

thereby
 

further
 

enhancing
 

the
 

accuracy
 

and
 

reliability
 

of
 

degradation
 

predictions.
Keywords:data

 

generation;
 

molecular
 

pump;
 

time
 

series
 

generator
 

adversarial
 

network;
 

degradation
 

prediction

0　 引　 言

　 　 先 进 超 导 托 卡 马 克 ( experimental
 

advanced
 

superconducting
 

Tokamak,
 

EAST)是中国在世界上研制的

首个全超导托卡马克核聚变实验装置,标志着中国核聚

变研究在工程和物理基础上的重要突破[1] 。 分子泵作为

EAST 装置中确保高真空环境的关键设备,需要在长时间

高强度运行条件下保持稳定。 然而,在这种高强度工作

环境中,分子泵的稳定性难以保证,难以获取分子泵的健

康状态以进行安全维护[2] 。 因此,研究分子泵剩余使用

寿命(remaining
 

useful
 

life,
 

RUL)对保障 EAST 装置的安

全运行具有重要意义。
在机械设备的寿命预测中,通常使用传感器采集设

备运行时的振动信号,提取相关特征并将性能指标回归

到这些特征上[3-5] 。 为了避免过拟合并保持模型的泛化

能力,需要大量数据来训练神经网络[6-7] 。 然而,对于分

子泵这类在特殊高强度运行环境下工作的设备,获取充

足的退化数据面临着巨大挑战。 一方面,分子泵长时间

高强度的运行工况对其稳定性产生较大影响,使得获取

其健康状态数据变得极为困难;另一方面,经济和时间成

本的限制也使得大规模数据采集难以实现。 这导致现有

的基于小样本的退化预测方法在准确性方面存在明显不

足,难以满足实际工程中对分子泵可靠性和安全性评估

的需求。
数据生成技术通过学习真实序列中的数据分布,以

创建逼真的生成数据,被认为是丰富数据的前沿解决方

案之一[8-10] 。 其中最广泛使用的技术是于 2014 年提出

的生 成 对 抗 网 络[11] ( generative
 

adversarial
 

network,
 

GAN)。 GAN 包含一个生成器和一个鉴别器。 生成器通

过学习原始数据集生成数据集,而鉴别器则负责区分真

实数据和生成数据。 在训练过程中,通过生成器和鉴别

器的博弈,促使生成器不断提高生成数据的质量。 尽管

GAN 在图像生成上已取得成功,但在处理时间序列数据

时生成的数据质量不高,难以捕捉长期依赖关系,且生成

效果不尽理想[12-14] 。 为提高时间序列数据生成的有效

性,Esteban 等[15] 尝试将长短期记忆网络( long
 

short-term
 

memory,
 

LSTM) 替代原始 GAN 框架中的卷积神经网

络(convolutional
 

neural
 

network,
 

CNN),以生成医疗时间

序列数据。 Zhang 等[16] 提出了一种卷积递归生成对抗网

络,其生成器结合了卷积神经网络以捕捉局部信息和递

归神经网络处理长期依赖关系的优点,用于模拟设备的

运行状态和剩余使用寿命的估计值。 Yoon 等[17] 提出了

一种新的框架,利用传统无监督 GAN 训练方法和更可控

的监督学习方法的优势,通过将无监督 GAN 网络与监督

自回归模型结合,旨在生成保留时间动态的时间序列数

据。 Zhao 等[18] 提出了一种基于注意力机制的改进生成

对抗网络,在生成时间序列数据时,通过注意力模块聚焦

于数据中的关键特征和时间点,增强了生成数据对复杂

动态过程的表现力。 Li 等[19] 则尝试将变分自编码

器(variational
 

autoencoder,
 

VAE) 与生成对抗网络相结

合,构建了
 

VAE-GAN 混合架构用于时间序列数据生成。
这种方法利用

 

VAE
 

的编码能力对数据进行初步的特征

提取和压缩,再由 GAN 进行数据生成,在一定程度上提

高了生成数据的稳定性和多样性。 Wang 等[20] 开发了一

种分层式生成对抗网络,将时间序列数据按照不同的时

间尺度和特征层次进行分解和生成,试图从多个层次还

原数据的真实分布。 在一些工业设备监测数据的生成实

验中取得了较好的效果。
综上所述,尽管前人在时间序列数据生成技术方面

进行了大量研究,但在分子泵退化数据生成上均未找到

能有效平衡数据质量、多样性、计算效率,且能准确捕捉

分子泵退化过程独特特征的方法,导致生成数据难以满

足分子泵可靠性预测对数据准确性和可靠性的高要求。
针对这些问题,提出了一种利用 Transformer 改进的时间

序列生成对抗网络方法 ( Transformer-based
 

time
 

series
 

GAN,TGAN-Transformer),旨在生成更接近实际失效过程

的退化数据。 通过使用 Transformer 作为生成器的核心网

络结构,利用多头注意力机制捕捉时间序列中的局部和

长期依赖关系。 Transformer 的并行计算能力和自注意力

机制使其在处理长序列数据时具有更高的效率和稳定

性,且可以从多个不同的角度捕捉时间序列中的信息,从
而生成更加多样和真实的数据。 并引入威布尔分

布(Weibull
 

distribution)来改变噪声分布,以准确地描述

分子泵的退化过程。

1　 时间序列生成对抗网络(TGAN)

　 　 TGAN 是一种生成对抗网络,专门用于生成时间序

列数据。 包含 4 个主要模块,分别为嵌入函数、恢复函
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数、生成器和鉴别器。 嵌入函数用于将高维的时间序列

数据映射到低维的潜在空间;恢复函数的作用是将嵌入

函数生成的低维潜在表示映射回到高维的时间序列数据

空间,可以视作嵌入函数的逆过程。 嵌入函数和恢复函

数的组合使用,提高了网络的学习效率。 生成器的主要

任务是生成新的数据,时间特征由监督网络学习,而鉴别

器的 作 用 是 区 分 生 成 数 据 和 真 实 数 据。 TGAN-
Transformer 的总体生成过程如图 1 所示。

图 1　 TGAN-Transformer 工作流程

Fig. 1　 TGAN-Transformer
 

workflow

　 　 将数据记录为 D = {X ij;i∈ I,j∈ J i },其中
 

I = {1,2,
3,…,m} 为分子泵数据记录时间; {J i = k1:n,1,k1:n,2,k1:n,3,
…,k1:n,i} 为记录时间下的多元特征数据,其中 n 为记录

特征个数。 X ij 为分子泵在运行过程中某一时间节点处的

特征数据。 TGAN-Transforme 的目标是使用训练集 D 来

学习最接近 P(X ij) 的概率密度
 

P̂(X ij)。
1. 1　 嵌入函数和恢复函数

　 　 首先,嵌入和恢复函数提供特征和潜在空间之间的

映射,允许对抗网络通过低维表示学习数据的潜在时间

动态。 基于包含静态特征和时态特征的映射函数 f M
E 和

f K
E ,利用嵌入网络将原始特征空间映射到包含静态特征

和时态特征的潜在空间,从而提高网络计算的时效性。
映射过程如式(1)所示。

hM = f M
E (M)

hk = f K
E (hM,hk-1,xk)

{ (1)

式中: hM 和 hk 是嵌入函数映射后的低维数据表达; M 是

原始数据的一个静态部分; xk 是原始时间序列中的第 K
条序列。

嵌入函数主要是对输入数据降维,同时还需要进行

从低维到高维的恢复。 恢复网络学习映射函数 f M
R 和 f K

R

来恢复原始特征。 逆映射过程为:

ĥM = f M
R (M)

ĥk = f k
R (hk)

{ (2)

式中: ĥM 和 ĥk 是恢复函数逆映射的数据表达。
1. 2　 生成器和鉴别器

　 　 在潜在空间中,使用生成器生成数据。 生成器的输

入数据为噪声向量,输出为生成数据。 基于生成函数

f M
G 、f K

G ,静态特征输入噪声 ZM 和时间特征输入噪声 ZK ,
生成的静态特征的低维表示 h′M ,生成的第 K 条序列的低

维表示为 h′k ,如式(3)所示。
h′M = f M

G (ZM)

h′k = f K
G (h′M,h′k-1,ZK){ (3)

式中: ZM 服从均匀分布, ZK 服从随机过程。 使用威布尔

分布描述 ZK。
威布尔分布是一种的连续概率分布,在可靠性工程

和寿命数据分析中广泛应用。 它可以用来建模机械设备

和组件的寿命和退化过程,并能适应不同的故障行为模

式。 其概率分布表达式如式(4)所示。

f(x;α,β) =
β
α

x
α( )

β-1

e
- x

α( )
β

, x ≥ 0

0, x < 0
{ (4)

式中: x是随机变量; α > 0 是尺度参数,决定了分布的尺

度大小; β > 0 是形状参数,决定了分布的形状。 威布尔

分布的形状参数可以灵活地调整分布的形状,使其适应

多种退化模式。 当 β < 1 时,表示早期故障阶段,故障率

随时间增加而降低;当 β = 1 时,表示恒定故障率阶段,故
障率不随时间变化;当 β > 1 时,表示磨损故障阶段,故
障率随时间增加而增加。 通过对实际分子泵退化数据进

行统计分析,发现 β = 1. 5 能够较好地拟合数据的退化模

式,尤其是非线性特征,更接近实际退化过程中的早期和

磨损阶段。 威布尔分布的尺度参数可以调整分布的尺度

大小,使得生成的数据在时间尺度上更接近实际数据。
选择 α = 130 是基于对实际分子泵退化数据的统计分析。
这一参数设置确保了生成的数据在时间尺度上与实际退

化数据相符,从而提高了生成数据的准确性。 由于分子

泵的退化过程具有非线性特征,威布尔分布能够更准确
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地捕捉这些特征,生成的数据更贴近实际情况,从而进一

步提高预测模型的性能。
鉴别器主要用于区分真实样本和生成样本。 采用双

向递归网络识别时域特征 h′k ,并在两个方向上进行区

分。 对两类分类器进行真实数据或生成数据的标签判

断。 鉴别器的输出为:

y~M = DM(h′M)

y~ k = DK(u
←

k,u
➝

k)
{ (5)

式中:u←k 正向递归函数的输出, u←k =R
←

X h
~

M, h
~

K,u←k+1( ) ,

u➝k 反向递归函数的输出, u➝k =R
➝

X( h
~

M, h
~

K,u➝k-1) , R
←

X 和

R
➝

X 分别表示正向递归函数和反向递归函数; y~M 是对生

成的静态特征的判别结果; y~k 是对生成的时间特征的判

别结果; DM 为鉴别器的静态特征判别函数; DK 为鉴别器

的时间特征判别函数。
生成器和鉴别器均采用了 Transformer 网络结构,

Transformer 网络通过自注意力机制能够同时关注不同时

间点的数据特征,从而更好地学习时间序列数据的长期

依赖关系。 这对于分子泵退化数据的生成和预测尤为重

要,因为退化过程通常是一个长期且复杂的过程。 与传

统的循环神经网络 ( recurrent
  

neural
 

network, RNN) 和

LSTM 相比,Transformer 能够并行处理数据,大大提高了

训练效率。 这对于处理大规模时间序列数据来说是一个

显著的优势,这种机制使得 Transformer 在处理长序列数

据时更为高效和准确。
1. 3　 损失和优化

　 　 对于损失函数,使用无监督损失用于训练鉴别器和

生成器,以确保生成的数据能够欺骗鉴别器;使用监督损

失用于训练生成器,以确保生成的数据在潜在空间中尽

可能接近真实数据;使用重建损失用于训练生成器和递

归网络,以确保生成的数据在重建过程中尽可能接近原

始数据。
作为特征和潜在空间之间的可逆映射,恢复函数应

该能够从原始数据的潜在表示中精确地重建原始数据。
因此本文的第 1 个目标函数是重建损失:

　 LR = EM,x1:k ~ p ‖M -M̂‖2 + ∑ k
‖xk -

 

x̂k‖2[ ] (6)

重建损失包括了两部分:1)用于评估整个数据片段

M 与恢复片段 M̂之间的差异;2)逐个点评估
 

xk 与
  

x̂k
 之间

的差异。 重建损失函数有助于确保生成的潜在表示能够

尽可能准确地保留原始数据的细节信息,确保生成数据

能够准确重建。
作为区分真实样本和生成样本的网络,鉴别器要求

生成器生成的数据 h′k 尽可能接近真实数据,并尽可能远

离生成数据,即 loghk 与 log(1 - h′k)) 和越大,鉴别器效

果越好。 因此,无监督损失的损失函数为:

LU = EM,x1:k ~ p log(yM) + ∑ k
log(yk)[ ] +

EM,x1:k ~ p~ [log(1 -y~M) + ∑ k
log(1 -y~k)] (7)

式中: EM,x1:k ~ p 表示从真实数据分布中抽取样本 x 的期

望; p 表示真实数据的分布; p~ 表示由生成器生成的数据

的分布。 对于来自真实数据分布 p 的 M 和 x1:k,yM 和 yk

分别表示鉴别器评估这些样本为真实的概率;相反,对于

来自生成数据分布 p~ 的 M 和 x1:k,y~ M 和y~ k 分别表示鉴别

器评估这些样本为假的概率。 无监督损失 LU 的目标是

通过最大化鉴别器能够正确区分真实与生成样本的概率

和最大化生成样本被错误地判断为真实的概率,来提升

生成器和鉴别器的性能。
仅仅依靠鉴别器的二元对抗性反馈可能不足以激励

生成器捕获数据中的逐步条件分布。 为了更有效地实现

这一目标,我们使用监督损失通过直接比较生成器生成

的潜在表示和真实数据的潜在表示,确保生成器能够学

习到时间序列数据的时间依赖性,如式(8)所示。

LS = EM,x1:k ~ p ∑ k
‖hk - f k

G (hM,hk-1,zk)‖2[ ] (8)

对于损失函数的优化,设 θe、θr、θg、θd 分别表示嵌入

网络、恢复网络、生成网络和鉴别网络的参数优化。 恢复

网络和嵌入网络主要是建立一个潜在空间,对抗网络对

潜在空间中的样本进行判别。 然后, θg 使生成数据的特

征尽可能接近真实数据。 学习过程的目的是优化时间序

列生成对抗网络中的模型参数 θe、θr、θg、θd。 其中 θe、θr

是在重建和监督损失上进行训练的,公式如式(9)所示。
min
θe,θr

(λLS + LR) (9)

θg、θd 的目的是使鉴别器中真实样本与生成样本之

间的距离最大化,而生成器生成的样本与真实样本之间

的距离最小。 因此,构造式(10)来优化鉴别器和生成器

网络。
min
θe,θr

(λLS + LR) (10)

其中, λ,η ≥ 0 是时间序列生成对抗网络中的超

参数。

2　 时间序列生成对抗网络生成数据流程与
评价

　 　 数据生成的原理是通过时间序列生成对抗网络学习

样本数据集的近似密度分布,并通过输入随机噪声,使模

型学习如何将随机噪声转换为符合真实数据分布的样

本,从而生成新的数据集。 随后,利用 LSTM 对生成的数

据进行预测验证;采用不同的误差公式计算预测误差,以
验证生成退化数据的有效性。 整体数据生成流程如图 2
所示。
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图 2　 数据生成流程

Fig. 2　 Data
 

generation
 

process

　 　 其中 LSTM 网络是循环神经网络一种变体。 它通过

引入门控机制解决了传统 RNN 的梯度消失和梯度爆炸

问题。 LSTM 可以有效地学习长期依赖关系,使其在处理

时间序列数据时具有显著优势。 使用 LSTM 网络对生成

的数据进行预测,具体网络参数如表 1 所示。

表 1　 本文所用网络参数

Table
 

1　 Network
 

parameters
 

used
 

in
 

this
 

article
网络 超参数 值 激活函数

时间序列生成对抗网络 优化器 Adam
滑动时间窗口 24

迭代次数 1
 

000
批量大小 32

层数 3
隐藏维度 9
生成网络 1 GRU Sigmoid
鉴别网络 1 GRU
生成网络 2 LSTM Sigmoid
鉴别网络 2 LSTM
生成网络 3 Transformer
鉴别网络 3 Transformer

LSTM LSTM 层 3 Tanh
全连接层 3 ReLU
损失函数 MAE

输出 1
优化器 Adam

　 　 对于预测效果的评价,使用均方根误差( root
 

mean
 

square
 

error,RMSE)、平均绝对误差( mean
 

absolute
 

error,
MAE)、分数(Score),表达式如(11) ~ (13)所示。

RMSE =
∑ n

i = 1∑ y i -ŷ i( ) 2

N
(11)

MAE = 1
N ∑

N

i = 1
| y i -ŷ i | (12)

Score =
∑ N

1
exp

y i -ŷ i

13( ) - 1( ) ,y i ≤ŷ i

∑ N

1
exp

y i -ŷ i

10( ) - 1( ) ,y i ≥ŷ i

ì

î

í

ï
ïï

ï
ïï

(13)

式中: ŷ i 为预测值; y i 为真实值; N 为样本总数。

3　 实验结果及分析

　 　 基于 TGAN-Transformer 生成数据集,网络结构使用表

1 参数构建。 生成器和鉴别器分别采用门控循环单

元(gated
 

recurrent
 

unit,GRU)、LSTM 和 Transformer 进行构

建。 对原始数据集和生成数据集进行了 T-SNE[21] ( T-
distributed

 

stochastic
 

neighbor
 

embedding ) 和 主 成 分 分

析[22](principal
 

component
 

analysis,PCA)。 其中,PCA 通过

线性变换将原始数据转换到新的坐标系统中,这些新坐

标按照方差递减的顺序排列。 PCA 有助于描述数据中的

线性关系和总体结构。
另一方面,T-SNE 适用于高维数据的可视化,在低维

空间中对高维数据的相似性进行建模,擅长保持局部数

据结构。 通过
 

T-SNE
 

分析,可以更好地描述数据中的聚

类和群组关系,并直观地展示生成样本与原始样本在二

维空间中的分布差异。
不同方法生成数据的 T-SNE

 

和
 

PCA
 

对比结果分别

如图
 

3 所示,其中蓝色散点为样本数据,红色散点为生成

数据。 由图 3( a)、( c)、( e) 可以看出,使用 Transformer
生成的数据更加集中且更接近于原始数据的分布。 这表

明 Transformer 生成的数据在高维空间中的局部结构与真

实数据相似。 而 LSTM 与 GRU 生成的数据生成的数据

分布较为分散,与原始数据的相似度较低。 由图 3( b)、
(d)、(f)可以看出,Transformer 生成的数据在主成分空间

中的分布与真实数据更加接近,这表明 Transformer 生成

的数据在全局特征上与真实数据相似。 通过 T-SNE 和
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PCA 分析,可以直观地看出 Transformer 生成的数据在分

布上更接近实际样本数据。 表明 Transformer 生成的数据

在预测性能上具有显著优势。

图 3　 基于不同生成器网络的时间序列生成对抗网络的可视化比较

Fig. 3　 Visual
 

comparison
 

of
 

Time
 

series
 

generative
 

adversarial
 

network
 

based
 

on
 

different
 

generator
 

networks

　 　 通过设置超参数(表 1),使用提出的算法对时间序

列生成对抗网络进行训练,可以得到损失函数的收敛结

果,如图 4 所示。 由图 4 可以看出,随着迭代次数的增

加,生成器和鉴别器的损失函数逐渐收敛,表明网络训练

过程取得了良好的效果。 图 4 中蓝色线表示无监督损

失,橙色线表示监督损失,而绿色线则表示重建损失。 可

以看到,各类损失在训练过程中逐渐减小,最终趋于稳

定,说明 TGAN-Transformer 模型训练成功。
为了验证生成数据的实际使用效果,通过结合生成

数据与样本数据作为训练集,通过设置超参数(表 1),训
练 LSTM 预测模型,并使用验证集进行验证,预测效果如

图 5 所示,红色线表示噪声添加威布尔分布生成数据的

预测结果,浅蓝色实线表示噪声添加高斯分布生成数据

的预测结果,蓝色实线代表真实的剩余寿命。 可以看出,
威布尔分布生成的数据预测曲线更接近真实的剩余寿

图 4　 TGAN-Transformer 的损耗结果

Fig. 4　 Loss
 

results
 

of
 

TGAN
 

Transformer

命,且在退化后半段,预测精度显著更高。 这表明威布尔

分布能够更准确地捕捉分子泵的退化过程。 而高斯分布

预测曲线与真实剩余寿命的差距较大,尤其是在退化后
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半段。 这验证了添加威布尔分布在分子泵退化数据生成

上的优越性。

图 5　 使用高斯分布与威布尔分布生成数据预测效果对比

Fig. 5　 Generate
 

a
 

comparison
 

chart
 

of
 

data
 

prediction
performance

 

using
 

Gaussian
 

distribution
and

 

Weibull
 

distribution

表 2 为两者的评价指标对比。 结果表明,噪声添加

威布尔分布生成的数据预测结果在
 

RMSE
 

和
 

MAE
 

上均

有提升。 并且在 t 检验上,p<0. 05,因此将噪声分布改为

威布尔分布可以显著提高分子泵退化数据集的预测

效果。
生 成 器 与 鉴 别 器 分 别 使 用

 

GRU、 LSTM
 

和
 

Transformer
 

的预测效果实验对比如图 6 所示。 其中,红
色线表示生成器与鉴别器使用

 

Transformer
 

的预测结果,
　 　 　

浅蓝色实线表示使用
 

GRU
 

的预测结果,棕色实线表示使

用 LSTM 的预测结果。 从图 6 可以看出,红色线更接近

真实寿命,这表明 Transformer 生成的数据能够更好地捕

捉分子泵的退化过程;验证了 TGAN-Transformer 的有

效性。

图 6　 时间序列生成对抗网络使用不同生成器

生成数据预测效果对比

Fig. 6　 Comparison
 

chart
 

of
 

data
 

prediction
 

performance
generated

 

by
 

Time
 

series
 

generative
 

adversarial
 

network
 

using
 

different
 

generators

进一步地,在表 2 的预测评价指标中,生成器与鉴别

器使用 Transformer 的 RMSE 和 MAE 均达到了最优结果。
与其他 3 种方法相比,TGAN-Transformer 在 RMSE 上分

别提高了 82%、43%和 55%。

表 2　 不同生成方法的预测误差比较结果

Table
 

2　 Comparison
 

results
 

of
 

prediction
 

errors
 

for
 

different
 

generation
 

methods
生成方法 噪声分布 RMSE MAE Score t 检验(与生成器为 Transformer 对比)

GRU 高斯分布 0. 122 0. 087 2. 75 t= 12. 602
 

572
 

p= 2. 352
 

912×10-36 <0. 05
GRU
LSTM

Transformer
威布尔分布

0. 096 0. 071 2. 266 t= -12. 162
 

256
 

p= 5. 580
 

356×10-34 <0. 05
0. 104 0. 072 2. 23 t= -11. 303

 

96
 

p= 1. 374
 

817×10-29 <0. 05
0. 067 0. 048 2. 8

　 　 最后,利用 LSTM 网络分别预测了利用深度卷积生

成对 抗 网 络 ( deep
 

convolutional
 

generative
 

adversarial
 

networks, DCGAN )、 GAN、 递 归 条 件 生 成 对 抗 网

络(recurrent
 

conditional
 

GAN,RCGAN)网络以及 VAE、条
件变 分 自 编 码 器 ( conditional

 

variational
 

autoencoder,
CVAE)网络,以及 TGAN-Transformer 生成数据的预测实验

对比。 预测结果如图 7 所示。 可以明显看出,的预测结果

更接近实际数据,证明了 TGAN-Transformer 的优越性。
　 　 为验证 TGAN-Transformer 的有效性,基于式(11) ~
(13) 的预测误差对比结果如表 3 所示。 本文方法的

RMSE 和 MAE 均达到了最优结果。 与 GAN、 DCGAN、
RCGAN、 VAE、 CVAE 相比, TGAN-Transformer 在 RMSE
指标上分别提高了

 

51%、48%
 

、36%、40%、30%;在 MAE
指标上,分别提升 52%、49%、38%、42%、33%。

图 7　 TGAN-Transformer 与其他 GAN 网络

生成数据预测效果对比

Fig. 7　 Comparison
 

of
 

data
 

prediction
 

performance
 

between
TGAN

 

Transformer
 

and
 

other
 

GAN
 

networks
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表 3　 不同生成方法的预测误差比较结果

Table
 

3　 Comparison
 

results
 

of
 

prediction
 

errors
for

 

different
 

generation
 

methods

生成方法 噪声分布 RMSE MAE Score

GAN 威布尔分布 0. 138 0. 099 3. 07

DCGAN 威布尔分布 0. 129 0. 094 2. 97

RCGAN 威布尔分布 0. 104 0. 077 2. 47

VAE 威布尔分布 0. 111 0. 083 2. 51

CVAE 威布尔分布 0. 096 0. 072 2. 64

TGAN-Transformer 威布尔分布 0. 067 0. 048 2. 8

　 　 实验证明 TGAN-Transformer 生成的退化数据更接近

实际退化过程,有效地扩展了数据集,并且可以通过
 

LSTM
 

网络准确地学习分子泵的退化过程。

4　 结　 论

　 　 本文通过深入研究分子泵退化数据生成及预测问

题,提出了一种创新的 TGAN 与 Transformer 相结合的方

法———TGAN-Transformer。 面对分子泵退化数据有限且

难以获取的现状,本文旨在通过生成高质量的退化数据

来扩充数据集,进而提高退化预测模型的准确性和可靠

性,确保 EAST 装置的安全运行。 为此,研究创新性地将

Transformer 网络引入时间序列生成对抗网络,利用其多

头注意力机制高效捕捉时间序列中的局部和长期依赖关

系,生成更贴近实际退化过程的数据。 同时,引入威布尔

分布改变噪声分布,准确描述分子泵的非线性退化过程,
使生成数据更贴合实际失效情况。 此外,采用 LSTM 对

生成数据进行预测,充分发挥其处理时间序列数据时学

习长期依赖关系的优势,有效提升预测可靠性。 研究的

难点在于如何平衡生成数据的质量、多样性和计算效率,
同时准确捕捉分子泵退化过程的独特特征。 为此,本文

不仅在生成对抗网络中引入了 Transformer,还通过引入

威布尔分布优化了噪声分布,确保生成的数据在时间尺

度和退化模式上与实际数据高度一致。 实验结果表明,
TGAN-Transformer 在 RMSE 和 MAE 等评价指标上表现

出色,显著提升了退化预测的准确性和可靠性,为分子泵

的可靠性分析和安全运行提供了有力支持。 更重要的

是,本文研究为其他工业设备的寿命预测提供了新的思

路和技术参考,展示了生成对抗网络在时间序列数据生

成领域的广阔应用前景。 未来的研究将进一步优化生成

网络结构,探索更多生成对抗网络的变种,以提高生成数

据的多样性和真实性,从而进一步提升退化预测的准确

性和可靠性。 此外,还将探讨如何将生成的数据应用于

更多的实际场景,例如故障诊断和预防性维护,为工业设

备的安全运行提供更加全面的支持。 同时,研究也将继

续深入挖掘 Transformer 和其他深度学习技术在时间序列

数据分析中的潜力,推动相关领域的发展。 总之,本文研

究不仅解决了当前分子泵退化预测中的难题,也为未来

的研究奠定了坚实的基础,具有重要的理论和实践意义。
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