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Aircraft arc fault identification based on t-SNE dimensionality
reduction fusion with SAPSO-BP
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Abstract: To more accurately and efficiently detect series arc faults under different loads and address the difficulty of setting a unified
threshold for different loads when using a single feature, a multi-feature fault arc recognition method based on t-distributed stochastic
neighbor embedding (t-SNE) and simulated annealing particle swarm optimization algorithm-optimized BP neural network ( SAPSO-BP)
is proposed. Firstly, considering the rich high-frequency components in arc fault currents, the traditional coefficient of variation (CV)
feature is improved by extracting the CV of current frequency. The improved CV achieves an average recognition accuracy of 96% across
different loads. Secondly, wavelet packet detail components and energy entropy, which are time-frequency domain features, are further
extracted and fused with CV for the identification of arc faults. During the fusion process, various nonlinear dimensionality reduction
algorithms are used, and clustering visualization comparisons are carried out. It is found that reducing the multidimensional features to a
three-dimensional space using t-SNE dimensionality reduction provides the highest distinction for fault arcs. Finally, the reduced features
are input into SAPSO-BP for training, and ablation experiments are designed to verify the recognition performance and robustness of the
proposed method. The results show that the recognition performance of the fusion algorithm tSNE-SAPSO-BP is improved by 3.2%,
16.8%, 27.66% , and 33.5% respectively compared with the recognition accuracy of single features on different loads. t-SNE
dimensionality reduction and clustering effectively deal with the nonlinear correlations between features, providing key feature information
for the identification of fault arcs by the fusion machine learning method.
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Fig. 1 Vibration test circuit
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Fig.2  Current waveform of vibration test
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Fig.3 Coefficient of variation values in large sample sizes
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Fig.5 Frequency distribution histogram of

fault arc current signals
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Fig. 6 Improved coefficient of variation values
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Fig. 14 TSNE-SAPSO-BP model framework
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Table 4 Neural network inputs and outputs ( Partial)

FHE 1 FHIE 2 FHIE 3 eS|
6.564 0 -52.43117 22.793 3 1
11.5219 -51.145 4 31.4309 1
-4.428 0 -53.644 7 37.5229 1
32.0215 -50.934 0 32.939 1 1
-2.742 8 -52.516 1 25.001 7 1
73.921 0 26.247 7 51.755 6 2

-38.878 6 -7.636 5 65. 869 2 2
-37.205 4 -7.540 3 67.296 2 2
-25.5950 -13.034 5 75.737 4 2
91.721 0 24.247 17 49.755 6 2
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Fig. 15 Confusion matrix of load 1 identification results
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Table 5 Comparison of recognition accuracy between

the dimensionality-reduced fusion model and

single-feature models (%)
PR R s TS
SNE-SAPSO-BP 99.2 0.17 4.01
B 7R S R A 96 2.51 6.74
/N AR 24 Y ) 82.4 17.02 16.13
e EO 71. 54 28.35 25.15
Hi i AR L% 65.7 22.93 36.72
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Table 6 Results of ablation experiment

HriHe SR EER %
cv t-SNE R4k kR ACC Fafd ACC
x x 87.76 83.4
x Vv 89. 81 86. 14
VvV x 94.38 91.22
vV 2 99.2 98. 96
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