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Abstract: Efficient production process and smart management are key to the sustainable development of natural gas wells. At present,
shale gas mining in actual production still faces the problem of liquid loading in wellbores causing the gas well production capacity to
decrease. In this paper, a “dual-element integration” plunger-foam compound drainage device is designed to improve the productivity
and drainage efficiency of gas wells, taking full advantages of both shale gas foam drainage and plunger drainage gas recovery systems. A
novel LSTM-WGAN predictive control method based on Long short-term memory networks ( LSTM ) and Wasserstein generative
adversarial networks (WGAN) is proposed. Density-based spatial clustering of applications with noise (DBSCAN) is used to preprocess
the data to avoid the impact of abnormal data on model prediction. The generator and the discriminator compete with each other and
update the weights of their respective gradient directions, and the predicted values of oil-casing pressure difference and water-gas ratio
are continuously optimized to approach the true value. This enables the model to accurately predict the oil-casing pressure difference and
water-gas ratio at the next moment. The predicted plunger-foam drainage strategy is implemented through the plunger-foam drainage
composite drainage intelligent management system. Compared with LSTM models, the LSTM-WGAN model reduces the root mean square
error (RMSE) , mean square error (MSE) , and mean absolute error (MAE) of the predicted oil-casing pressure difference and water-

gas ratio by 2.64%, 5.13%, 11.75% and 8.81%, 8.07%, 6.60%, respectively. The experimental results demonstrate that the
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prediction model can accurately predict the oil-casing pressure difference and water-gas ratio data, guide the plunger-foam compound

drainage system to issue correct instructions to deploy foam and plungers, and the intelligent delivery of plunger-foam is realized.

Keywords : compound drainage; predictive control; LSTM-WGAN ; oil-casing pressure difference; water-gas ratio; liquid loading
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Fig. 1 Design of plunger-foam combination liquid removal device
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Fig.3 Plunger-foam combination liquid removal system
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Fig. 4  Structural schematic

F LS, AT T AR B i b B RE ), (IG5 T 15
e SIS E Ty d
2.1 BREE®ENET

K DBSCAN 23R 250 1k B S S5 5 (B K I B2 0T,
DBSCAN JEHEE N 6 fif 7, DBSCAN SR H % & —Ff
BT BRI, TR % A S R R A2 X
RN JT AT AE 23 (BB e v e AT R TR AR B M 5
X, BRI SEbENLE B — A S bRie T 5z s
B r Y, R AR S A B R T R D
B0 (MinPts) |, U 24 5 25 0 #0005 (Eps ) 15 Hrid B
BN, LARIR] 4 07 2 Ak BT A O WA IE s, i SR
R SRR N T /ML AR T2 S bR e Sy M
Pt

WEEZE SUKIE R vV, , 253 DBSCAN HHE 1k
WIS A HIE R D, o B AL PR AR WA 7 PR

FLSBER
Real data
SR I B DBSCAN (Bs,30,1)

7
|
>

1)
Y

B DBSCAN

ANERER = ~lalzlal =]~
=lslald|S]afS] < A B Slelel= elel =
2l glels =l I allalalalallcilc =
g2l gl Sl 2l gl el Generated data slalzZl 22l &) s8] €
AEEEEEEE (Bs,30,1) slSlEl2lElZZ] 2
sISSISl gl 2l 5| = ElI=ZI=ZlZN= 2] =2 2
FEEEEHEE v A EEH
S5l ellal gl A o Shlelel g alla
All={=]e ~ Real data Uiefo
(Bs,30.1)
NS wap  —/ - 5% )

K5 LSTM-WGAN #AUHES:
Fig.5 LSTM-WGAN model framework

6 DBSCAN J5i2
Fig. 6 DBSCAN principle diagram

2.2 KEHIZIZM %
LSTM J& T — Ff i I3 #f 28 I 4% ) J& 1 34 #h 42 )
2% (recurrent neural network , RNN) f) As Rl LSTM F|

e HH‘&I:EGME{EHH| &tﬂﬂﬁ{ﬁﬂ—’|ﬁﬁﬂﬁwu_’| &wu%ﬂ

Bl7 B Ak B e

Fig.7 Data processing flowchart

FHTERZE AT T 25 A FCAZ A0 R 7 856, Ak TR 1 3 3
RINN eI it i r 5 S B 88 8 0 - 08 2 9 2 ) [ A
MITRETERA T H th R IR A7 BRI T LSTM 442
S D3 SRS S AR R BT SV HE SR A S & L
D,,, A LSTM [W£8 BEATAL B LSTM AR 48 &4k 401 45
sAESEAT IR A A K . 280 LST™ b B 9 Kot
A Ly, B0

Ly, =LSTM(D,,.) (1)

data



5 2 3

FHF LSTM-WGAN 58 () Sy HE A A HER 28 Ge i 42 i) 7 vk <15 -

¥ L, 2N WGAN M2 A7 5] B .

D(G(z))=D(L,,) (2)
2.3  Wasserstein 4 B 3T T 0 4%

GAN 2% &I FHZRe i AR th A e G 50051
i D PSB85 2 1, FN B DR R A 2 )
—MFEAE SR A B A R S B o A, AR G ialIAl
il 75 ABURR AR I A 1 2 BRAG A 0 A e, ifi 0 3048 D
R B AR, A s G 550 D YA
TR EA TS 45 B 7, HERMBFEA S BAE AT
BIX 4y, WGAN H1 5] AT Wasserstein 1 2 2k X
JS(Jensen-Shannon) 1 KL ( Kullback-Leibler) & &%, LA fi#
T GAN X 45 e Az B8 B0 01 2 ) R0 99 28 )1l 2 AN F
SERREBL . 5 GAN ML, WGAN #5750 i S5 4 2 1 o) 28 46
TR ENE | AR T AR B AU ™ o WGAN ) ek 8k
FE SN

Vp=E, _, [f.(x)] —E._,[f.(g(2))] (3)

e w10 JEXF R SEL, SR B vV, B KR, AT L
K B AR A BURE AR A5 B SEBRFEAS S A 17 W R S
AW I A /b, DT AR 7N AR IR A RS B A
ARZE 20 x~ P, TEFEAS R SRAE 1) LS E 2 S Fe
TRz~ P TR A RBELE R K B S
JEZEHUK S LEARIE A 2~ P, ™, LSTM HEU M 7 i)
z MEHA 300 3k (00 2 235 4 A 4 A R T Bz 3 L5
PMEE2E KA 8 L. o ¥ x~P,,, L,
B AH 5B D e T X ArH50,
2.4 LSTM-WGAN #&#Y

T LB, AR SCHH T — 4 LSTM-WGAN ¥
2R LSTM-WGAN W28 R I F1 ] WGAN M 45 1%k
it 26 FSCRE 7 1 LSTM XoF s 50408 T 44 6 G 3% 149 40 BT R
3, AR A R 22 AR A OB A T T ke T 4
T HEA: FEATAR ) [ , HE22AE AR f) F 42 fl 3E R
& 8 FioR, B AR R S BRANR . 1 e A B
IEEIE B2 KAL), 885 T DBSCAN 4h#
B P ) SR, K SR (AL RS A B 48 Min-Max
B0 —4k, FIH LSTM-WGAN ¥ 2% % )11 25 4 3 e 4711
2, LSTM-WGAN T A5E 70 00 3 50040 15 31 0 25 21 | i e
I R BEAE AR G PAA T AR I 455 SR AN R I 1
Pl

3 KBWRERSN

3.1 HUEWmALE

FEAR SCHIFSE 50 0 A P S B T 00 435 SR v ffy
SER R RR X — BB H R — R PP ROk
ORI 1 o A, oGRS JH TS LAY A B R

Lsnwoa
DBSCAN f STM = ‘E

= 755011
- = B B ] =T
=y | W J 2o e I-=>ﬂ

L
1024 25

F; werinin N il R R
H 9 ;
o= —O—[] !
H '
Hr & o 1
N LEER J

I8 BT LSTM-WGAN [y 42 il A
Fig. 8 Predictive control model based on LSTM-WGAN
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Table 1 Experimental data and missing values
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Table 2 Experimental data and outliers
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Fig. 9 Effectiveness of outlier detection
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Fig. 10  Predicted tubing pressure difference
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Table 4 Comparison of evaluation metrics for

tubing pressure difference results

Tt 222 I 45 AR RMSE MSE MAE
GAN 0. 086 36 0. 007 46 0. 068 62
LSTM 0. 066 94 0. 004 48 0. 066 12

LSTM-WGAN 0.065 17 0. 004 25 0. 047 45




5 2 3

BET LSTM-WGAN 7 )R FE -1 HEE 5 HER 2R G M 4 ) 07 vk <17 -

x5 KKUEERTMIERIILE
Table 5 Comparison of evaluation metrics

for water-gas ratio results

T 25 ) 4 A5 A RMSE MSE MAE
GAN 0.156 76 0.024 57 0.085 54
LSTM 0.126 40 0.015 98 0.074 59

LSTM-WGAN 0.115 26 0.014 69 0. 069 67
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Table 6 Comparison of evaluation indicators of three models for predicting

oil-casing pressure difference and water-gas ratio

o PEM R (RMSE )
IR H2K B3R O EA4R OHESK oK HTRK O OHE8RK HEIK HIOXK JERIN
A 0.065 17 0.065 17
HERZ B 0.066 72 0.071 23 0.079 27 0.092 32 0. 103 44 0. 082 60
C 0.06527 0.07022 0.08201 0.09021 0.097 82 0.103 12 0.10992 0.117 64 0.130 97 0.143 44  0.101 06
A 0.115 26 0.115 26
KA B 0.114 82 0.129 84 0.14429 0.159 76 0.164 69 0.142 68
C 0.11539 0.127 83 0.14627 0.16003 0.16438 0.16220 0.17292 0.176 30 0.181 02 0.183 41  0.158 98
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Fig. 12 LSTM-WGAN model with different prediction time

predicts the performance of oil-casing pressure difference
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Fig. 13 LSTM-WGAN model with different prediction time

predicts the performance of water-gas ratio
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