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摘　 要:高效的生产过程和智能化管理是天然气井可持续发展的关键,目前实际生产中页岩气开采仍然面临着井底积液造成气

井产能下降的问题。 为提高天然气井的产能和排水效率,充分利用泡沫排水采气和柱塞气举的优点,设计了一套“双元合一”
的柱塞-泡排复合排采装置,提出了一种新颖的基于长短期记忆网络(LSTM)和 Wasserstein 生成对抗网络(WGAN)的复合排采

LSTM-WGAN 预测控制方法。 利用基于密度的抗噪聚类算法(DBSCAN)对数据进行预处理,避免异常数据对模型预测的影响。
通过生成器和判别器相互对抗并更新各自梯度方向的权重,不断优化使油套压差、水气比预测值逼近真值,从而准确预测下一

时刻的油套压差和水气比。 通过柱塞-泡排复合排采智能管理系统,实施预测的柱塞泡排投放策略。 实验结果表明,LSTM-
WGAN 模型的误差最小,与 LSTM 模型相比,LSTM-WGAN 模型的油套压差和水气比预测结果的均方根误差、均方误差、平均绝

对误差分别降低了 2. 64%、5. 13%、11. 75%和 8. 81%、8. 07%、6. 60%。 LSTM-WGAN 预测模型可以准确地预测油套压差和水气

比,指导柱塞-泡排复合排采系统发出正确的投放泡排球和柱塞指令,实现了泡排-柱塞的全智能化投放。
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Abstract:
 

Efficient
 

production
 

process
 

and
 

smart
 

management
 

are
 

key
 

to
 

the
 

sustainable
 

development
 

of
 

natural
 

gas
 

wells.
 

At
 

present,
 

shale
 

gas
 

mining
 

in
 

actual
 

production
 

still
 

faces
 

the
 

problem
 

of
 

liquid
 

loading
 

in
 

wellbores
 

causing
 

the
 

gas
 

well
 

production
 

capacity
 

to
 

decrease.
 

In
 

this
 

paper,
 

a
 

“ dual-element
 

integration”
 

plunger-foam
 

compound
 

drainage
 

device
 

is
 

designed
 

to
 

improve
 

the
 

productivity
 

and
 

drainage
 

efficiency
 

of
 

gas
 

wells,
 

taking
 

full
 

advantages
 

of
 

both
 

shale
 

gas
 

foam
 

drainage
 

and
 

plunger
 

drainage
 

gas
 

recovery
 

systems.
 

A
 

novel
 

LSTM-WGAN
 

predictive
 

control
 

method
 

based
 

on
 

Long
 

short-term
 

memory
 

networks
 

( LSTM )
 

and
 

Wasserstein
 

generative
 

adversarial
 

networks
 

(WGAN)
 

is
 

proposed.
 

Density-based
 

spatial
 

clustering
 

of
 

applications
 

with
 

noise
 

(DBSCAN)
 

is
 

used
 

to
 

preprocess
 

the
 

data
 

to
 

avoid
 

the
 

impact
 

of
 

abnormal
 

data
 

on
 

model
 

prediction.
 

The
 

generator
 

and
 

the
 

discriminator
 

compete
 

with
 

each
 

other
 

and
 

update
 

the
 

weights
 

of
 

their
 

respective
 

gradient
 

directions,
 

and
 

the
 

predicted
 

values
 

of
 

oil-casing
 

pressure
 

difference
 

and
 

water-gas
 

ratio
 

are
 

continuously
 

optimized
 

to
 

approach
 

the
 

true
 

value.
 

This
 

enables
 

the
 

model
 

to
 

accurately
 

predict
 

the
 

oil-casing
 

pressure
 

difference
 

and
 

water-gas
 

ratio
 

at
 

the
 

next
 

moment.
 

The
 

predicted
 

plunger-foam
 

drainage
 

strategy
 

is
 

implemented
 

through
 

the
 

plunger-foam
 

drainage
 

composite
 

drainage
 

intelligent
 

management
 

system.
 

Compared
 

with
 

LSTM
 

models,
 

the
 

LSTM-WGAN
 

model
 

reduces
 

the
 

root
 

mean
 

square
 

error
 

(RMSE),
 

mean
 

square
 

error
 

(MSE),
 

and
 

mean
 

absolute
 

error
 

(MAE)
 

of
 

the
 

predicted
 

oil-casing
 

pressure
 

difference
 

and
 

water-
gas

 

ratio
 

by
 

2. 64%,
 

5. 13%,
 

11. 75%
 

and
 

8. 81%,
 

8. 07%,
 

6. 60%,
 

respectively.
 

The
 

experimental
 

results
 

demonstrate
 

that
 

the
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prediction
 

model
 

can
 

accurately
 

predict
 

the
 

oil-casing
 

pressure
 

difference
 

and
 

water-gas
 

ratio
 

data,
 

guide
 

the
 

plunger-foam
 

compound
 

drainage
 

system
 

to
 

issue
 

correct
 

instructions
 

to
 

deploy
 

foam
 

and
 

plungers,
 

and
 

the
 

intelligent
 

delivery
 

of
 

plunger-foam
 

is
 

realized.
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0　 引　 言

　 　 在气井的整个开采周期中,随着气体流速降低,气体

不足以携带液体出井,液体在井下聚集产生井底积液,导
致气井的产量和产能下降。 对于大多数气井来说,延长

生命周期的主要挑战来自于排除气井中的井底积液[1] 。
气井产能会因为井底积液而大幅下降,因此需及时准确

判断当前井底积液量,并实施有效的排水采气措施,以确

保稳产增效[2] 。 改善积液问题可以从硬件排液技术和软

件预测方法两方面入手。
为了解决井底积液问题,工业界采用了多种排液技

术。 柱塞气举技术因其高效性和经济性而成为一种广泛

采用的方法。 柱塞排水采气工艺以其使用寿命长、维修

成本低、具有较高的排水效率和稳定性特点被广泛应用,
但存在需要定期维护和清洗,操作过程中可能出现柱塞

卡阻,且在高温高压环境下可能存在耐受性差等问题。
段进贤[3] 根据大牛地不同管柱结构设计了不同规格的分

体式柱塞,提高了气井的日产液量。 周宇驰[4] 对排水采

气工艺进行了模拟改进,分析总结了差分数值求解方法,
并基于质量守恒原理建立了柱塞排水采气工艺过程中柱

塞运动的数学模型,提高了排水采气效率。 黄伟明等[5]

对分体式排水采气柱塞进行了结构优化,提高了气井的

排水效率,还能有效延长设备的使用寿命,减少维护成

本。 泡沫排水采气工艺具有排水效率高、排水速度快、可
以有效降低井底压力等优点,但传统泡沫排水采气采用

车载人工加注方式,工作量大,施工成本高,气井不易实

现智能化管理[6] 。 液体泡排剂[7] 因其操作简便且在较低

浓度下可以快速形成泡沫的特点,在工业界被广泛应用,
但液体泡排剂可能因井下温度和压强变化而失效。 固体

泡排剂[7] 相较于液体泡排剂能保持更长时间的稳定性,
尤其在高温高压下的表现更佳。 然而,固体泡排棒在下

落时受上升气液两相流影响严重,且在通过倾斜段时与

井筒摩擦阻力较大,最后导致下落位置较浅,难以与积液

充分反应。
实施排采工艺前,利用预测模型对天然气井关键状

态参数进行准确预测,合理制定泡排球和柱塞的投放策

略,实现快速有效排除井底积液,提高气井产能。 随着油

气田自动化的快速发展,深度学习方法在石油工程领域

得到广泛应用。 李萍等[8] 在煤层气井产量上使用前馈神

经网络(back
 

propagation,BP)补偿算法进行预测,并得到

了良好的预测结果,为煤层气井产量预测提供了一种神

经网络新方法。 Calvette 等[9] 讨论了长短期记忆神经网

络(long
 

short-term
 

memory
 

networks,LSTM)模型预测油气

产量时比油藏数值模拟的预测精度更高。 Lee 等[10] 分别

使用 LSTM 模型和递减曲线分析对页岩气井的月产量进

行预测,论证了 LSTM 模型的预测精度更高。 由于 LSTM
预测准确性高,并且预测所需的数据量小,更加适用于页

岩气井生产数据预测,因而被广泛应用于油气井现场的

生产预测[11] 。 学者们对 LSTM 模型不断进行优化,如

Zhan 等[12] 通过集成学习方法,组合了两种不同特性的

LSTM 模型,使模型预测精度显著提高。 Kocoglu 等[13] 利

用 Bi-LSTM 模型对美国 Pennsylvania 地区页岩层多口井

产量进行预测,预测精度相较于门控循环单元 ( gated
 

recurrent
 

unit, GRU) 和 LSTM 模型均有所提高。 Song
等[14] 利用粒子群优化算法对 LSTM 模型的超参数进行处

理,提高了模型预测的准确性。 通过 LSTM 进行时间序

列分析、捕捉气井状态整体变化趋势,其已成为石油工程

领域预测的重要工具,但 LSTM 存在处理长序列时的全

局建模和多维向量间复杂交互关系不足的问题,在处理

需要长时间跨度依赖的预测任务时,可能导致模型无法

有效捕捉长距离依赖关系,从而使预测精度降低。
综上所述,针对页岩气泡排和柱塞排水采气两种系

统的单一局限性,为各自发挥优势并扬长避短,设计了一

套“双元合一”的柱塞-泡排复合排采系统,该系统综合利

用了柱塞排水和泡沫排水的优点,并采用了一种新型球

状固体泡排剂(泡排球),球状结构可降低泡排剂下行阻

力,泡排球先于柱塞投放,可在柱塞的推动下到达井下更

深的位置,与积液反应更加充分,提高排液效率。 为解决

柱塞-泡排复合举升系统泡排球和柱塞投放频率问题,提
出了一种适合气井生产工艺特征的 LSTM-WGAN 柱塞-
泡排预测控制方法,充分利用 LSTM 可以捕捉气井数据

在时间上的长期依赖关系和 Wasserstein 生成对抗网

络(wasserstein
 

generative
 

adversarial
 

networks,WGAN) 可

以生成更稳定数据的优势,并在特征输入中加入了“关井

时间”变量,进一步提高了模型的预测精度,实现了在柱

塞-泡排复合排采系统中对气井产液情况的准确预测,能
够确保泡排球和柱塞的准确投放,提高了排水采气系统

的稳定性和排采效能。

1　 柱塞-泡排复合排采系统

　 　 “双元合一”柱塞-泡排复合排采系统采用智能化和

模块化设计理念,由上位机管理系统模块、电源模块、柱
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塞排采模块、泡排球排采模块以及控制模块组成。 系统

整体设计如图 1 所示。

图 1　 柱塞-泡排复合排采装置设计

Fig. 1　 Design
 

of
 

plunger-foam
 

combination
 

liquid
 

removal
 

device

采用嵌入式芯片作为控制模块,搭建泡排球和柱塞

控制电路。 柱塞排采模块由电磁柱塞卡定器、柱塞到达

传感器等组成。 泡排球排采模块由投球装置、泄压装置

构成。 其中,泄压装置由一个泄压阀以及两个电动法兰

球阀组成,泄压装置位于泡排球投放装置和油管之间,以
防止投球装置在投放泡排球时井口压力对其产生冲击,
造成设备损坏等问题。 通过反转电路控制电磁阀和泄压

阀实现系统压力平衡,完成嵌入式控制模块驱动电机实

现投球功能;由继电器电路控制柱塞投放,柱塞根据其自

身重力下落到油管中,采用电压转换模块将光电传感器

的输出转换并反馈到柱塞控制模块,完成对柱塞到达状

态的检测。
开发了柱塞-泡排复合排采智能管理系统作为上位

机管理系统模块,其中由基于 LSTM-WGAN 网络的预测

模型根据实时更新的现场数据(油套压差、水气比)做出

预测结果,柱塞-泡排复合排采智能管理系统根据预测结

果发出投放泡排球和柱塞的信号,控制模块根据所接收

到投放信号的不同而判断投球数量和投柱塞频率(控制

流程如图 2 所示),实现按需投放的智能工作模式。
柱塞-泡排复合排采模拟装置如图 3 所示,系统结构

简图如图 4 所示。 该装置模拟了柱塞-泡排复合排采系

统在实际气井中的运行情况,其中柱塞排采模块和泡排

球排采模块相互配合,以实现气井井底积液的高效排除。
通过这些模块的协同作用,可以模拟气井排采过程,为气

井生产运行提供参考依据。

2　 LSTM-WGAN 模型构建

　 　 基于 LSTM-WGAN 井底积液预测控制模型整体框架

如图 5 所 示。 首 先, 通 过 基 于 密 度 的 抗 噪 聚 类 算

法(density-based
 

spatial
 

clustering
 

of
 

application
 

with
 

noise,DBSCAN)对长宁气田现场的油套压差和水气比数

图 2　 控制流程

Fig. 2　 Control
 

flow
 

diagram

图 3　 柱塞-泡排复合排采系统

Fig. 3　 Plunger-foam
 

combination
 

liquid
 

removal
 

system

据进行数据预处理,避免异常数据对预测结果的影响。
然后将优化后的数据输入到 LSTM-WGAN 网络中,LSTM
提取时间步中的数据作为输入,并在序列的下一步预测

特征。 将预测值输送到 WGAN 网络中和真实数据一起

进行鉴别。 通过不断相互对抗训练,使生成数据分布更

加接近真实数据分布。 该方法利用 LSTM 和 WGAN 二者
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图 4　 结构简图

Fig. 4　 Structural
 

schematic

　 　 　 　 　

的优势,不仅提升了模型对数据的处理能力,也增强了预

测结果的可靠性。
2. 1　 异常值检测单元

　 　 采用 DBSCAN 聚类算法作为异常值检测单元。
DBSCAN 原理图如图 6 所示。 DBSCAN 聚类算法是一种

基于密度的聚类算法,它将密度相连点的最大集合定义

为一个簇,并可在空间数据库中发现任意形状的噪声聚

类。 算法开始首先随机选择一个点,标记所有与该点距

离在半 径 r 内 的 点, 如 果 标 记 点 的 数 量 大 于 最 小

数(MinPts),则当前点为核心点( Eps) 并与其标记点形

成一个簇。 以相同的方法处理所有改为被标记点,如果

找出点的数量小于最小包含点数,则该点被标记为噪

声点[15] 。
油套压差、气水比记为 Vdata,经过 DBSCAN 聚类算法

处理后的结果记为 Ddata。 数据处理流程图如图 7 所示。

图 5　 LSTM-WGAN 模型框架

Fig. 5　 LSTM-WGAN
 

model
 

framework

图 6　 DBSCAN 原理

Fig. 6　 DBSCAN
 

principle
 

diagram

2. 2　 长短期记忆网络

　 　 LSTM 属于一种递归神经网络, 是循环神经网

络(recurrent
 

neural
 

network,RNN) 的变体
 [16] 。 LSTM

 

利

图 7　 数据处理流程

Fig. 7　 Data
 

processing
 

flowchart

用在网络中加入门结构和记忆细胞的方法,解决了普通

RNN 在训练过程中引起的梯度爆炸与梯度消失的问题,
从而能在较长序列中表现良好[17] 。 模型使用 LSTM 捕捉

气井历史数据与未来投放柱塞泡排策略的依赖关系。 将

Ddata 送入 LSTM 网络进行处理,LSTM 根据其数据分布特

点生成具有相同分布的数据。 经过 LSTM 处理后的数据

记为 Ldata,即:
Ldata = LSTM(Ddata) (1)
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将 Ldata 送入 WGAN 网络中进行判别,即:
D(G( z)) = D(Ldata) (2)

2. 3　 Wasserstein 生成对抗网络

　 　 GAN 网络是基于博弈论的思想,由生成器 G 与判别

器 D 两个模型网络组成。 判别器 D 的作用是学会判断

一个样本是来自模型分布还是数据分布。 生成器 G 试图

制造假样本并在未被发现的情况下使用它,而判别器 D
试图检测出假样本。 通过生成器 G 与判别器 D 的相互

对抗驱使它们改进各自的方法,直到假样本与真样本无

法区 分。 WGAN 中 引 入 了 Wasserstein 距 离 来 代 替

JS(Jensen-Shannon) 和 KL ( Kullback-Leibler) 发散,以解

决 GAN 网络中生成器的梯度消失问题和网络训练不稳

定的情况。 与 GAN 相比,WGAN 模型显著提高了网络模

型稳定性,降低了模型崩溃的风险[18] 。 将 WGAN 的函数

定义为:
VW = Ex ~ Pdata

[ fw(x)] - Ez ~ Pz
[ fw(gθ(z))] (3)

其中,w 和 θ 是对应的参数,当函数 VW 最大时,可以

采用它来模拟生成样本分布到实际样本分布的 W 距离,
通过不断训练将其最小化,从而缩小生成样本和实际样

本之间的差距,x~ Pdata 指样本中采样的真实数据,z 是隐

含层中的向量,z ~ P( z ) 指生成随机噪声。 将真实的油套

压差和水气比数据传入 x ~ Pdata 中,LSTM 接收噪声向量

z 作为输入,并通过网络结构转换,生成尽可能接近真实

的油套压差、水气比分布的数据 Ldata。 将 x ~ Pdata 和 Ldata

传入判别器 D 中进行区分判别。
2. 4　 LSTM-WGAN 模型

　 　 基于以上理论,本文构建了一个 LSTM-WGAN 深度

学习模型。 LSTM-WGAN 网络模型利用 WGAN 网络的数

据生成能力和 LSTM 对时序数据前后依赖关系的分析能

力,可对气井油套压差和水气比数据进行预测,解决了投

放泡排柱塞频率的问题。 基于该模型的预测控制流程如

图 8 所示。 数据在模型中训练步骤如下:首先输入现场

井筒数据(油套压差、水气比),然后使用 DBSCAN 处理

数据中的异常值,将异常值处理后的数据使用 Min-Max
法归一化,利用 LSTM-WGAN 网络对训练集数据进行训

练,LSTM-WGAN 预测模型测试数据得到预测结果,最后

通过智能管理系统执行模型预测结果做出相应的投放

策略。

3　 实验及结果分析

3. 1　 数据预处理

　 　 在本文研究中,数据预处理是实现预测结果准确、可
靠的关键步骤。 这一阶段目的是通过一系列处理步骤来

改善数据的质量,使其适用于后续的分析和建模。

图 8　 基于 LSTM-WGAN 的预测控制模型

Fig. 8　 Predictive
 

control
 

model
 

based
 

on
 

LSTM-WGAN

1)缺失值处理

实验使用数据是长宁气田采集到的油压、套压、日产

气和日产水等数据。 现场采集信息时由于遗漏、无响应、
或者任何其他的因素会导致采集到的数据出现缺失。 缺

失值会减少样本量并影响预测结果的质量,需要在进行

模型训练前对数据中的缺失值进行处理。 数据中的缺失

值如表 1 所示,其中表中方框表示为缺失值。

表 1　 实验数据及缺失值

Table
 

1　 Experimental
 

data
 

and
 

missing
 

values
日期 套压 油压 日产气 日产水

2020 / 10 / 27 8. 60 1. 61 0. 51 2. 00
2020 / 10 / 28 8. 61 1. 61 0. 53 1. 00
2020 / 10 / 29 8. 61 3. 80 0. 23 2. 00
2020 / 10 / 30 8. 64 5. 15 0. 19 2. 00
2020 / 10 / 31 8. 71 5. 07 0. 21 1. 00
2020 / 11 / 1 - - 0. 22 1. 00
2020 / 11 / 2 8. 88 3. 78 0. 74 1. 00
2020 / 11 / 3 8. 89 1. 87 0. 87 1. 00
2020 / 11 / 4 8. 90 1. 68 0. 38 2. 00
2020 / 11 / 5 8. 90 1. 57 0. 20 1. 00

　 　 为保证数据的连续性,实验采用平均值法填充,计算

缺失值前后 5
 

d 数据的平均值进行填充,排除缺失值对

实验结果的影响,最后计算数据的油套压差和水气比值。
2)异常值处理

现场采集油压、套压、日产气、日产水等数据时,会因

为传感器的不稳定或者其他不确定因素而使采集到的数

据和真实数据出现明显的误差,从而影响预测的准确性。
数据中的异常值如表 2 所示,其中框中的数字为异常值。

实验采用 DBSCNA 算法检测数据集中的异常值。 实

验中分别对训练集、测试集数据进行了异常值的检测。
图 9 展示了对数据集的异常值检测效果。

3)归一化处理

将异常值处理后的油套压差和水气比采用 Min-Max
方法进行归一化处理。 其中,Xmax 为数据的最大值,Xmin

为数据的最小值,X∗为归一化后的数据。 归一化处理使
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　 　 　 　 　 表 2　 实验数据及异常值

Table
 

2　 Experimental
 

data
 

and
 

outliers
日期 套压 油压 日产气 日产水

2017 / 5 / 2 8. 94 4. 91 4. 26 10. 00
2017 / 5 / 3 8. 87 5. 02 4. 14 9. 00
2017 / 5 / 4 8. 76 4. 83 4. 20 8. 00
2017 / 5 / 5 8. 83 4. 66 4. 31 10. 00
2017 / 5 / 6 8. 80 4. 58 4. 51 10. 00
2017 / 5 / 7 29. 30 4. 70 4. 50 9. 00
2017 / 5 / 8 8. 77 4. 57 4. 41 9. 00
2017 / 5 / 9 8. 70 4. 58 4. 39 9. 00

2017 / 5 / 10 8. 70 4. 46 4. 31 11. 00
2017 / 5 / 11 8. 63 4. 63 4. 42 10. 00

图 9　 异常值检测效果

Fig. 9　 Effectiveness
 

of
 

outlier
 

detection

数据归一化到[0,1]区间内,减小数据因素对预测模型

精度的影响。

X∗ =
X - Xmin

Xmax - Xmin
(4)

3. 2　 实验模型和评价指标

　 　 为了比较不同模型的预测性能,实验采用均方误

差(MSE)、平均绝对误差( MAE)和均方根误差( RMSE)
对实验结果进行评估,MSE、MAE 和 RMSE 的值越小,模
型预测准确性越高,预测值与真实值的差距越小[19] 。

选取了 2 种预测模型( GAN[20] 、LSTM[21] )与 LSTM-
WGAN 进行对比,以测试 LSTM-WGAN 模型的预测能力。
3 种模型实验的相关参数如表 3 所示。
3. 3　 实验结果与分析

　 　 为了验证本文提出的 LSTM-WGAN 预测模型的预测

能力,将 LSTM-WGAN 与 GAN 模型和 LSTM 模型进行对

比。 油套压差实验结果如图 10 所示,水气比实验结果如

图 11 所示。

表 3　 3 种模型相关参数

Table
 

3　 Relevant
 

parameters
 

of
 

three
 

models
参数 / 模型 GAN / LSTM / LSTM-WGAN
时间步长 30
预测步长 1
隐藏层数 5

学习率(生成器) 0. 000
 

2
学习率(判别器) 0. 000

 

1 / 0. 000
 

1 / -
Epoch 150

批次大小 16

图 10　 油套压差预测值

Fig. 10　 Predicted
 

tubing
 

pressure
 

difference

图 11　 水气比预测值

Fig. 11　 Predicted
 

water-gas
 

ratio

　 　 此外,表 4 和 5 为 LSTM-WGAN 与其他两种模型的

评价指标量化对比。 所提模型的评价指标相比其他两种

单一模型的评价指标较小,这是由于 GAN 采用 JS 发散,
计算复杂程度低于 Wasserstein 距离, 相较于 LSTM-
WGAN,GAN 的收敛速度更快,但生成数据质量更低;
LSTM 的计算复杂程度同样低于 LSTM-WGAN,但难以处

理数据分布不平衡的气井数据,容易出现过拟合问题。
结果表明所提预测模型可利用其基线模型的优势来提高

预测精度。
表 4　 油套压差结果评价指标对比

Table
 

4　 Comparison
 

of
 

evaluation
 

metrics
 

for
tubing

 

pressure
 

difference
 

results
神经网络模型 RMSE MSE MAE

GAN 0. 086
 

36 0. 007
 

46 0. 068
 

62
LSTM 0. 066

 

94 0. 004
 

48 0. 066
 

12
LSTM-WGAN 0. 065

 

17 0. 004
 

25 0. 047
 

45
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表 5　 水气比结果评价指标对比

Table
 

5　 Comparison
 

of
 

evaluation
 

metrics
for

 

water-gas
 

ratio
 

results
神经网络模型 RMSE MSE MAE

GAN 0. 156
 

76 0. 024
 

57 0. 085
 

54
LSTM 0. 126

 

40 0. 015
 

98 0. 074
 

59
LSTM-WGAN 0. 115

 

26 0. 014
 

69 0. 069
 

67

　 　 综上所述,将 LSTM-WGAN 与次优模型相对比,油套

压差的 RMSE、 MSE、 MAE 分 别 平 均 降 低 了 2. 64%、
5. 13%、11. 75%,水气比的 RMSE、MSE、MAE 分别平均降

低了 8. 81%、8. 07%、6. 60%。 这也进一步验证了本文方

法的有效性。

3. 4　 不同预测时长的 LSTM-WGAN 模型对比

　 　 随机选取 1
 

200 组数据为测试集。 使用 LSTM-
WGAN 模型建立基于 30

 

d 数据预测 1
 

d 的油套压差和水

气比(A 模型)、基于 30
 

d 数据预测 5
 

d 的油套压差和水

气比(B 模型)、基于 30
 

d 数据预测 10
 

d 的油套压差和水

气比(C 模型),3 种模型对未来 1 ~ 10
 

d 预测结果的评价

指标如表 6 所示。 随预测天数增加,同一模型的评价指

标在逐渐增大。 在预测未来 1
 

d 时,A、B、C 模型的评价

指标相近。 在预测未来 1 ~ 5
 

d 时,B、C 模型的评价指标

相近,并且 RMSE 随预测时间增加而增大,表明模型的预

测精度会随预测天数的增加而降低;在预测同一天时,
A、B、C 模型的精度近似,但总体 A 模型预测效果最好。

表 6　 3 种模型预测油套压差和水气比的评价指标对比

Table
 

6　 Comparison
 

of
 

evaluation
 

indicators
 

of
 

three
 

models
 

for
 

predicting
oil-casing

 

pressure
 

difference
 

and
 

water-gas
 

ratio

模型
评价指标(RMSE)

第 1 天 第 2 天 第 3 天 第 4 天 第 5 天 第 6 天 第 7 天 第 8 天 第 9 天 第 10 天 总体

油套压差

A 0. 065
 

17 0. 065
 

17
B 0. 066

 

72 0. 071
 

23 0. 079
 

27 0. 092
 

32 0. 103
 

44 0. 082
 

60
C 0. 065

 

27 0. 070
 

22 0. 082
 

01 0. 090
 

21 0. 097
 

82 0. 103
 

12 0. 109
 

92 0. 117
 

64 0. 130
 

97 0. 143
 

44 0. 101
 

06

水气比

A 0. 115
 

26 0. 115
 

26
B 0. 114

 

82 0. 129
 

84 0. 144
 

29 0. 159
 

76 0. 164
 

69 0. 142
 

68
C 0. 115

 

39 0. 127
 

83 0. 146
 

27 0. 160
 

03 0. 164
 

38 0. 162
 

20 0. 172
 

92 0. 176
 

30 0. 181
 

02 0. 183
 

41 0. 158
 

98

　 　 3 种 LSTM-WGAN 模型在测试集上的表现,如图 12、
13 所示。 A 模型预测油套压差和水气比的值最接近真

实数据,B 模型表现稍差于 A 模型,C 模型只能预测油套

压差和水气比的大致走势。 结果表明随预测时间延长,
模型的整体预测精度会降低。

图 12　 不同预测时长 LSTM-WGAN 模型预测油套压差表现

Fig. 12　 LSTM-WGAN
 

model
 

with
 

different
 

prediction
 

time
predicts

 

the
 

performance
 

of
 

oil-casing
 

pressure
 

difference

3. 5　 “关井时间”对 LSTM-WGAN 模型精度的影响

　 　 引入“关井时间”变量,表示当天生产后连续关井的

天数。 加入“关井时间”变量后,剔除关井期间的静态数

据,防止非生产时段的恒定参数影响模型预测的准确性。

图 13　 不同预测时长 LSTM-WGAN 模型预测水气比表现

Fig. 13　 LSTM-WGAN
 

model
 

with
 

different
 

prediction
 

time
predicts

 

the
 

performance
 

of
 

water-gas
 

ratio

本研究选择了存在关井现象前 15
 

d 和开井当天的生产

数据,并分别对比 LSTM-WGAN 模型加入和未加入“关井

时间”变量预测开井当天油套压差、水气比数据与开井当

天真实数据的差异,以验证加入“关井时间”后对 LSTM-

WGAN 模型预测能力的影响,结果显示加入“关井时间”
后模型的预测精度得到提高,如图 14 所示。

3. 6　 柱塞-泡排复合排采智能管理系统

　 　 开发了网络页岩气水平井柱塞-泡排复合排采智能

管理系统,利用 LSTM-WGAN 预测控制模型由采集的
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图 14　 关井时间变量对 LSTM-WGAN 模型预测精度的影响

Fig. 14　 Effect
 

of
 

the
 

well
 

shutdown
 

time
 

variable
 

on
 

the
prediction

 

accuracy
 

of
 

the
 

LSTM-WGAN
 

model

气井数据实时预测油套压差和水气比值,动态监测井

底积液的变化趋势。 智能管理系统根据 LSTM-WGAN
模型的预测结果,与投放依据作比较并发出相应的控

制信号。
投放泡排柱塞依据如表 7 所示,其中 T1、T2、T3、T4

为水气比阈值,T1 >T2 >T3 >T4;G1、G2、G3 为油套压差阈

值,G1 <G2 <G3。

表 7　 泡排柱塞投放依据

Table
 

7　 Indicators
 

for
 

foam
 

ball
 

and
 

plunger
 

deployment
指标 操作 信号

水气比≥T1 不投放 00
水气比≤T2 ,油套压差≈G1 投放泡排 01
水气比≤T3 ,油套压差≈G2 投放柱塞 10
水气比≤T4 ,油套压差≈G3 投放泡排和柱塞 11

　 　 智能管理系统控制界面如图 15 所示。
系统包括设备状态显示、数据图像显示和按钮控制

部分。 在自动模式中,智能管理系统通过 LSTM-WGAN
模型判断预测的油套压差和水气比结果,智能决策柱塞-
泡排投放措施,实现柱塞-泡排的全自动化投放。 同时,
在手动模式下,手动选择实现投放泡排、柱塞和添加泡排

球等操作。 在图像显示部分,实时更新油套压差、水气比

走势和模型预测结果以及柱塞-泡排投放状态。 图 15 展

图 15　 智能管理系统控制界面

Fig. 15　 Intelligent
 

management
 

system
 

control
 

interface

示了智能管理系统根据模型预测结果控制柱塞-泡排复

合排采系统同时投放泡排和柱塞,并反馈泡排投放和柱

塞到达状态。

4　 结　 论

　 　 针对单一排采工艺适应性差,排采措施次数频繁的

难题,设计了一套页岩气水平井柱塞-泡排复合排采智能

举升系统,利用二者优势高效排除气井井底积液。 针对

该系统的泡排球和柱塞投放频率问题,提出了一种基于

LSTM-WGAN 预测模型,优化了 LSTM 模型对油套压差和

水气比走势的捕捉能力,解决了单一模型在处理长序列

时的全局建模和多维向量间复杂交互关系不足的问题。
通过在长宁气田数据上的验证,模型准确地预测出油套

压差和水气比的变化幅度,所提出的网络框架显示出强

大的泛化能力。 同时将所提出的基于 LSTM-WGAN 井底

积液预测控制模型与 LSTM 和 GAN 模型进行对比,表明

所提出的模型在井底积液预测方面具有更好的性能。 但

是,LSTM-WGAN 模型训练过程中仍然存在生成器和判

别器之间不稳定问题,尤其是在较为复杂的时间序列数

据上。 未来的研究将集中在设计更稳健的损失函数,以
及采用更高效的训练策略,以加速收敛并减少模型训练

不稳定现象。
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