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改进黑翅鸢算法的 1D-2D-GAF-PCNN-GRU-MSA
弓网电弧检测应用∗

李　 斌　 舒嘉辉　 严灵潇　 田　 浩

(辽宁工程技术大学电气与控制工程学院　 葫芦岛　 125105)

摘　 要:针对高速列车运行时高速气流场对受电弓碳滑板与接触网之间的接触压力和电弧状态影响。 通过计算得出更符合实

际状态下的接触压力和电弧状态模型,建立了考虑高速气流场影响的弓网电弧实验模型。 提出了改进黑翅鸢算法( IBKA)的

1D-2D-GAF-PCNN-GRU-MSA 故障检测模型。 应用格拉姆角场(GAF)将一维接触电压信号时序图象化转换为二维图像并通过

双通道卷积神经网络(PCNN)进行特征识别。 另将一维时序信号通过门控循环单元(GRU)捕捉时序信号特征。 将一维时序信

号特征与二维图像特征进行特征融合,弥补各自局限性。 针对模型中的难以确定的学习率、门控循环单元网络层神经元个数等

参数,融入改进黑翅鸢算法(IBKA)对参数寻优使模型更加合理。 最后,融合多头自注意力机制提高模型准确率。 将提出的模

型与其他 3 种模型分别对 3 组不同实验条件的弓网电弧模型进行检测,验证提出的模型具有较强的鲁棒性和较高的准确性。
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Abstract:
 

The
 

influence
 

of
 

high-speed
 

airflow
 

field
 

on
 

the
 

contact
 

pressure
 

and
 

arc
 

state
 

between
 

the
 

pantograph
 

carbon
 

slide
 

plate
 

and
 

the
 

catenary
 

during
 

the
 

operation
 

of
 

high-speed
 

train
 

was
 

analyzed.
 

By
 

calculating
 

the
 

contact
 

pressure
 

and
 

arc
 

state
 

models
 

that
 

are
 

more
 

in
 

line
 

with
 

the
 

actual
 

state,
 

an
 

experimental
 

model
 

of
 

pantograph
 

arc
 

considering
 

the
 

influence
 

of
 

high-speed
 

airflow
 

field
 

is
 

established.
 

In
 

this
 

paper,
 

a
 

1D-2D-GASF-PCNN-GRU-MSA
 

fault
 

detection
 

model
 

based
 

on
 

the
 

improved
 

black-winged
 

kite
 

algorithm
 

(IBKA) was
 

proposed.
 

The
 

gram-angle
 

field
 

(GAF)
 

was
 

used
 

to
 

convert
 

the
 

one-dimensional
 

contact
 

voltage
 

signal
 

into
 

a
 

two-dimensional
 

image,
 

and
 

the
 

feature
 

recognition
 

was
 

carried
 

out
 

by
 

the
 

parallelizing
 

convolutional
 

neural
 

network
 

( PCNN).
 

In
 

addition,
 

the
 

one-dimensional
 

timing
 

signal
 

is
 

captured
 

by
 

the
 

gated
 

recurrent
 

unit
 

( GRU).
 

The
 

features
 

of
 

the
 

one-dimensional
 

time-series
 

signal
 

and
 

the
 

two-
dimensional

 

image
 

are
 

fused
 

to
 

make
 

up
 

for
 

their
 

respective
 

limitations.
 

In
 

view
 

of
 

the
 

parameters
 

in
 

the
 

model,
 

such
 

as
 

the
 

learning
 

rate
 

that
 

is
 

difficult
 

to
 

determine,
 

the
 

number
 

of
 

neurons
 

in
 

the
 

network
 

layer
 

of
 

the
 

gated
 

recurrent
 

unit,
 

and
 

the
 

improved
 

black-winged
 

kite
 

algorithm
 

is
 

integrated
 

to
 

optimize
 

the
 

parameters
 

to
 

make
 

the
 

model
 

more
 

reasonable.
 

Finally,
 

the
 

multi-head
 

self-attention
 

mechanism
 

was
 

fused
 

to
 

improve
 

the
 

accuracy
 

of
 

the
 

model.
 

The
 

proposed
 

model
 

and
 

other
 

three
 

models
 

were
 

tested
 

on
 

three
 

sets
 

of
 

pantograph-net
 

arc
 

models
 

with
 

different
 

experimental
 

conditions,
 

and
 

it
 

was
 

verified
 

that
 

the
 

proposed
 

model
 

had
 

strong
 

robustness
 

and
 

high
 

accuracy.
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0　 引　 言

　 　 随着电气化设备的快速发展,国家交通强国政策[1]

的大力推进,进入 21 世纪,我国高速铁路事业飞快发

展。 到 2023 年底,我国高铁营业里程已达到 4. 5 万千

米,位居世界第一。 然而,由于弓网电弧问题的存在,
已经严重影响我国高速铁路事业的进一步发展。 弓网
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电弧的产生会对电网受流质量产生一定影响,并且在

燃弧时会对碳滑板有很大的烧蚀最用,减少碳滑板的

使用寿命,严重时会发生火灾。 因此,对弓网电弧的精

准识别十分重要。
目前,国内外许多学者对弓网电弧检测做了深入研

究。 例如,李斌等[2] 通过利用 D-score 评估准则对电流进

行特征筛选,最后利用海鸥算法优化支持向量机进行电

弧识别。 郭凤仪等[3] 提出了将变分模态分解与三阶谱融

合的直流电弧识别方法。 时光等[4] 通过对弓网系统接触

电阻研究,提出了一种融合先进知识的改进食肉算法优

化径向基神经网络检测模型。 Huang 等[5] 通过利用卷积

神经网络对弓网电弧图像进行识别的检测方法。 张蓬鹤

等[6] 提出了通过广义 S 变换进行时频特征提取,利用二

维卷积神经网络进行识别的方法。 赵怀军等[7] 提出利用

模糊逻辑器对电流进行特征融合的方法判别电弧的产

生。 鲍光海等[8] 通过对电弧重燃和熄灭时的磁通量分

析,并计算峭度值的方式识别是否有电弧产生。
可见,上面提到的方法分别为两种,一种是对通过利

用神经网络对电弧图像集进行模型训练实现对电弧的识

别。 另一种是对电弧的电压信号和电流信号进行特征筛

选判断电弧的产生。 然而,上述方法仅适用于干扰少,比
较理想化的图像,而且在对电流或电压信号进行特征筛

选的过程种也都遗忘了一些特征。
针对上述方法的不足,提出了一种改进黑翅鸢算法

(improved
 

black-winged
 

kite
 

algorithm, IBKA) 的 1D-2D-
GAF-PCNN-GRU-MSA 的电弧故障检测模型。 由于门控

循环单元(gate
 

recurrent
 

unit,GRU)在处理时间序列数据

时具有参数少,容易训练和优化的优点。 因此,采用门控

循环单元对一维时序电压信号进行特征提取。 然而,由
于门控循环单元结构简单,抗干扰性差,处理复杂信号时

难以挖掘数据集的复杂特征。 针对门控循环单元的不

足,另设计一条支路。 通过格拉姆角场( gram-angle
 

field,
GAF)将一维电压信号时序图像化为二维图像,设计了双

通道卷积神经网络最大保留图像特征。 利用双通道卷积

神 经 网 络 ( parallelizing
 

convolutional
 

neural
 

network,
PCNN)对复杂图像识别处理能力强,抗干扰性好的特点,
弥补了门控循环单元的不足。 而门控循环单元又可以有

效缓解双通道卷积神经网络梯度消失的问题。 因此,将
一维信号与二维图像特征融合,可以有效弥补了各自的

不足。 最后利用 IBKA 对模型中的参数以及学习率进行

优化,并融合多头注意力机制提高算法准确性。

1　 格拉姆角场

　 　 格拉姆角场[9] 可以把一维时间序列信号转化成二维

图像,它可以最大程度的保留原始信号的特征,并且不会

将特征丢失。 格拉姆角场的理论基础是将笛卡尔坐标系

统中的一维数据转换到极坐标系下,然后根据它特有的

内积定义方式,利用三角函数和与差等方法,得到表征时

间相关性的信息,从左上到右下平铺到图像中,从而生成

GASF 和 GADF 两类图像。
定义时间序列 X = {x1,x2,…,xn} ,这里的 N 表示时

间点的总数:i 为时间点, i ∈ [1,n] 。 将 X 进行 GAF 交

换流程如下所示:
将每组样本的时间序列信号 X = {x1,x2,…,xn} 采

用归一化处理方式缩放至区间[ -1,1],如式(1)所示。

x~ i =
(x i - min(X)) + (x i - min(X))

max(X) - min(X)
(1)

式(2)表示格拉姆矩阵。 不同向量之间的内积可以

表现出向量相关性,而向量间夹角表现了同向量间的相

关程度。

G = XTX =

〈x1,x1〉 … 〈x1,xn〉
〈x2,x1〉 … 〈x2,xn〉

︙
〈xn,x1〉 … 〈xn,xn〉

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

(2)

其中,G 是格拉姆矩阵;<·>为内积运算。
由于一维时序数据并不是向量,所以需要对时间序

列进行极坐标变换,将时序电流数据转化为向量,如

式(3)所示。

ϕ = arccos(x
~

i), - 1 ≤x
~

i ≤ 1,x
~

i ∈X
~

r =
t i
N

, t i = 1,2,…,N

ì

î

í

ï
ï

ïï

(3)

其中, t i 为时间戳;N 表示正则化极坐标生成空间的

常数系数; ϕ 表示相角;r 表示极坐标的半径; x~ 为标准

化缩放后的 X。
若采用格拉姆矩阵来定义内积,很难区分输出数据

的高斯噪声,所以格拉姆角场为了消除高斯白噪声的影

响,定义了两种特有的带有惩罚项的内积形式,其公式如

式(4)和(5)所示。
〈x i,x j〉 = cos(ϕi + ϕ j) (4)
〈x i,x j〉 = sin(ϕi - ϕ j) (5)
根据上述两种不同内积定义形式,可以得到两种不

同的 格 拉 姆 角 场: GASF
 

( gramian
 

angular
 

summation
 

fields) 与 GADF ( gramian
 

angular
 

difference
 

fields )。 如

式(6)和(7)所示。

GGASF =

cos(ϕ1 + ϕ1) … cos(ϕ1 + ϕn)
cos(ϕ2 + ϕ1) … cos(ϕ2 + ϕn)

︙
cos(ϕn + ϕ1) … cos(ϕn + ϕn)

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

(6)
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GGADF =

sin(ϕ1 - ϕ1) … sin(ϕ1 - ϕn)
sin(ϕ2 - ϕ1) … sin(ϕ2 - ϕn)

︙
sin(ϕn - ϕ1) … sin(ϕn - ϕn)

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

(7)

对于在时域上距离较近的电流数据,GAF 变换具有

抑制信号扰动的能力。 发生差模干扰时有: Δϕi =

- Δϕi ;发生共模干扰时有: Δϕi = Δϕi ,将上述两种不同

干扰分别代入式(8)与式(9),可以自动地去除干扰量。
GAF 生成二维图像过程如图 1 所示。

〈x i,x j〉 = cos[(ϕi + Δϕi) + (ϕ j + Δϕ j)] (8)
〈x i,x j〉 = sin[(ϕi + Δϕi) - (ϕ j + Δϕ j)] (9)

图 1　 二维图像转换过程

Fig. 1　 2D
 

image
 

conversion
 

process

2　 双通道卷积神经网络

　 　 为了使图像特征损失降低到最小,搭建双通道卷积

神经网络(PCNN),用于将 GAF 生成的二维图像特征全

部提取。 双通道卷积神经网络能够避免单通道卷积神经

网络[10](convolutional
 

neural
 

networks,CNN)对 GAF 生成

的二维图像进行舍去的问题,克服了单通道神经网络特

征提取不完全的缺点。 其结构如图 2 所示。

图 2　 双通道卷积神经网络

Fig. 2　 Parallelizing
 

convolutional
 

neural
 

network

　 　 首先,分别将 GASF 和 GADF 图像同时双通道卷积

神经网络中,两条双通道卷积神经网络在经过双层卷积-
池化后各输出一组一维向量;然后,将所输出两组一维向

量进行拼接融合;通过全连接层后,最终将融合特征输入

到 Softmax 层中,输出最终的概率。
利用双通道卷积神经网络学习不同的图像权重值,

 

双支路高维特征互补,使得深层空间特征得到显著增强

3　 门控循环单元

　 　 门控循环单元[11] ( GRU)旨在解决长期记忆和反向

传播中的梯度等问题。 GRU
 

背后的原理与长短期记忆

网络(long
 

short
 

term
 

memory,LSTM
 

)非常相似,即用门控

机制控制输入、记忆等信息在当前时间步做出预测,其结

构如图 3 所示。
重置门 rt 公式如式(10)所示。
rt = σ(Wrx t + Urk t -1 + br) (10)
由当前位置输入 x t 和上一位置隐层的输出 k t -1 经线

性变化相加后再接 sigmoid 组成。 由于 sigmoid 的存在,
其输出值为 0 ~ 1 之间,用于选择有多少信息留下。

更新门 zt 公式如式(11)所示。
zt = σ(Wzx t + Uzk t -1 + bz) (11)
其中, k′t 为更新后的值,由重置门 rt ,上一位输出

k t -1 和这一位置输出 x t 共同决定。 如式(12)所示。
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图 3　 门控循环单元结构

Fig. 3　 Gated
 

recirculating
 

unit
 

structure

k′t = tanh(Wcx t,U( rt·k t)) (12)
其中, k t 为当前位置最终输出,由更新后的值 k′t 、更

新门 zt ,上一位置输入 k t -1 共同决定,如式(13)所示。
k t = zt·k t -1 + (1 - zt)k′t (13)
GRU 对于时间序列中有效信息的挖掘更具优势,在

面对大规模训练样本的情况时,能够在减少预测时间的

同时保证预测效果不受明显影响[12] 。

4　 超参数优化

　 　 由于模型中具有难以确定的学习率、GRU 层神经元

个数等参数,为了提高模型故障识别的精度[13] 引入改进

黑翅鸢算法( IBKA)对超参数进行优化。 黑翅鸢优化算

法[14](black-winged
 

kite
 

algorithm,BKA)是一种受自然启

发的群智能优化算法,其灵感来源于黑翅鸢这种动物的

生存策略。
4. 1　 传统黑翅鸢算法

　 　 与大多数优化算法一样,均匀地分配每只黑翅鸢的

位置,种群初始化如式(14)所示。
P i = BK lb + rand(BKub - BK lb) (14)
其中, i ∈ 1,2,…,N,BK lb 和 BKub 分别是第 j 维黑翅

鸢的下界和上界,rand 为[0,1]之间的随机数。
黑翼鸢攻击行为的数学模型如式(15)所示。

y i,j
t+1 =

y i,j
t + n × (2r - 1) × y i,j

t ,其他

y i,j
t + n(1 + sin( r) × y i,j

t ),g < r{ (15)

n = 0. 05 × e
-2 ×( t

T )
(16)

其中, y i,j
t 和 y i,j

t +1 分别表示第 i 只黑翼鸢在第 j 维和

t+1 次迭代步骤中的位置;r 为 0 ~ 1 之间的随机数,g 为

0. 9 的常数;T 是迭代的总次数,t 是到目前为止已经完成

的迭代次数。
黑翼鸢迁徙行为的数学模型如式(17):

y i,j
t+1 =

y i,j
t + C(0,1) × (L j

t - h × y i,j
t ),其他

y i,j
t + C(0,1) × (y i,j

t - L j
t),F i < Fri

{ (17)

h = 2sin( r + π
2

) (18)

其中, L j
t 表示到目前为止第 t 次迭代的第 j 维黑翼风

筝的领先得分者。 F i 表示任一黑翼鸢在第 t 次迭代中获

得的第 j 维当前位置; Fri 表示第 t 次迭代中任意黑翼鸢

在第 j 维随机位置的适应度值;C(0,1)代表柯西突变。
4. 2　 改进黑翅鸢算法

　 　 为了使 BKA 算法前期具有更好的全局搜索能力,引
入 Levy 飞行策略和自由度参数的 t 分布对黑翅鸢位置进

行改进,使得算法在迭代前期具有较好的全局开发能力,
在迭代后期增加跳出局部最优的可能。 改进如式(19)
所示。

y i,j
t+1 =

y i,j
t + β 􀱇 Levy(λ),g < r

y i,j
t + t( iter) × y i,j

t ,其他{ (19)

其中, β 为控制步长参数,表达式如式(20)所示。
β = 0. 01(y i,j

t - y i,j
best) (20)

其中, y i,j
best 为当前最优解。

为了更好控制 Levy 飞行和 t 分布的转换提高算法的

收敛速度,采用动态选择概率对概率 g 进行改进,以此来

调节自适应 t 分布变异和 Levy 飞行的使用。
改进后的动态概率如式(21)所示。

g′ = ω 1 - ω 2 × (T - t
T

) (21)

其中, ω 1 决定了动态选择概率的上限, ω 2 决定了动

态选择概率的变化幅度。 ω 1 = 0. 5,ω 2 = 0. 1 时调节最优。
图 4 为 IBKA 算法流程。

5　 多头自注意力机制

　 　 注意力机制( attention
 

mechanism,AM) 是机器学习

中一种广泛应用于各种不同类型任务的数据处理方法。
可以有选择地聚焦于与任务相关度更高的特征,抑制无

用特征的影响,从而提高模型的性能。
对于给定 q 和 X,选择第 i 个输入信息的概率如式

(22)所示。

α i = p( z = i | X,q) = softmax( s(x i,q)) = es(xi,q)

∑
N

j = 1
es(xi,q)

(22)
其中,X 为输入信息,如式(23)所示。
X = [x1,x2,…,xN] (23)
维度为 N,z 为要索引的位置,q 为查询矩阵, s(x i,

q) 为注意力评分函数。 表达式如式(24)所示。
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图 4　 改进黑翅鸢算法流程图

Fig. 4　 Flow
 

chart
 

of
 

the
 

improved
 

black-winged
 

kite
 

algorithm

s(x i,q) =
xT
i q

d
(24)

D 为输入信息的维度。 多头注意力机制[15] ( multi-
headed

 

self-attention,MSA)可以看作从一组查询 Q 和一

组键值矩阵 K-V 到输出的映射,如图 5 所示。
表达式如式(25)所示。

Attention(Q,K,V) = softmax(QK
T

dk

)V (25)

其中, dk 是 Q 和 K 的维度,MSA 是由多个自注意力

机制结构组成的,用于同时处理同一特征信息,其输出为

多个自注意力的拼接,如图 5 所示。 这种结构可以更好

地捕捉不同特征之间的依赖关系,并进一步提高模型的

表现,其表达式如式(26)和(27)所示。
H i = Attention(QW i

Q,KW i
K,VW i

V) (26)
MSA(Q,K,V) = concat(H1,H2,…,Hm)W0 (27)
其中,m 为注意力头的个数,V 的维度为 dV ,注意力

权值矩阵 W0 ∈ Rmdv×dim,Wi
V ∈ Rdv×dim,Wi

Q,Wi
K ∈ Rdk×dim 。

图 5　 多头自注意力结构

Fig. 5　 Multi-head
 

attention
 

structure

6　 故障检测模型总设计

　 　 将原始故障信号利用 GAF 实现时序图象化,生成两

组二维图像,并设计双通道卷积神经网络对两组图像进

行空间特征学习,避免特征丢失的问题。 其次,将故障信

号利用 GRU 捕捉一维时序信号的动态变化。 将 GRU 和

PCNN 结合,可以同时考虑时序特征和空间特征。 将一

维时序信号和二维图像融合,弥补各自的局限性。 针对

模型的学习率,卷积核大小,GRU 神经元个数,融合改进

黑翅鸢算法( IBKA)进行寻优,优化模型建构。 最后,融
合 MSA,将特征进行重点强化,提高故障识别准确率。 总

体设计如图 6 所示。

7　 弓网电弧实验模拟

　 　 在模拟实验中,通常认为碳滑板与接触网接触压力

为定值。 在实际过程中,空气流速的产生对受电弓碳滑

板会产生空气抬升力[16] ,使得碳滑板与接触网之间的接

触压力随空气流动以及列车运行速度的改变而变化,进
而使得碳滑板与接触网之间的摩擦力随之变化。 由空气

动力学原理可知,受电弓与接触网之间的空气动力主要

分为空气压差力 F 以及空气摩擦力 f。 表达式如式(28)
和(29)所示。

F = ρCLv2
∞ (X0sin2θ∞ + Y0sinθ∞ cosθ∞ ) (28)

f = 2πρLV2
∞ (X0sin2θ∞ + Y0sinθ∞ cosθ∞ ) (29)

所以,高速气流情况下,接触网空气抬升力近似计算
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图 6　 改进黑翅鸢算法的 1D-2D-GAF-PCNN-GRU-MSA 故障检测模型

Fig. 6　 Improved
 

black-winged
 

kite
 

algorithm
 

and
 

1D-2D-GAF-PCNN-GRU-MSA
 

fault
 

detection
 

model

为式(30)所示。
Pc = F + f (30)
其中, ρ 为空气密度, X0 为滑板的宽度, Y0 为滑板厚

度,L 为滑板的长度。 θ∞ 空气来流的弓角。 v∞ 为空气

流速。
其中,C 为空气动力系数, ρ 为空气密度,取 C= 0. 7,

ρ= 1. 29
 

kg / m3,θ∞ = ±10°。 当 V∞ 为 100 m / s 时,代入计

算得接触压力大约为 4 N。
同时,由于高速气流影响,电弧并不是垂直于碳滑

板,而是倾斜状态。 图 7 为高速气流下产生电弧示意图。

图 7　 高速气流场对电弧影响

Fig. 7　 Effect
 

of
 

high-velocity
 

airflow
 

field
 

on
 

arc

图 7 中橙色斜柱为电弧, F风是弓网电弧受到的力。
从图 7 中可以看出,列车运行过程中 α 是空气流速 v∞ 的

函数,如式(31)所示。
vz = v∞ cosα
vh = v∞ sinα
α = f(vx)

ì

î

í

ïï

ïï

(31)

　 　 随着气流速度越来越快,电弧被拉长越多,此时电弧

散热面积增加,也更容易熄灭[17] 。
根据以上理论进行实验模拟设计,研究高速气流影

响下弓网电弧的特性变化。 因此需要采用适合的方案模

拟真实情况下的高速气流。 在实际运行情况下,气流对

电弧主要是横向吹弧作用,因此在实验中,设备产生的高

速气流需要横向作用于弧柱。 弓网电弧实验模拟如图 8
所示。

图 8　 弓网电弧实验模拟

Fig. 8　 Experimental
 

simulation
 

of
 

pantograph
 

arc

为降低其他因素对弓网电弧的干扰,使用单因素法

改变实验条件采集数据。 由于弓网系统电流有效值为

141. 4
 

A,因此实验过程中不改变电流大小,只对气流速

度和接触压力作改变,得到不同条件下的弓网电弧数据,
其一是不同条件下的数据便于分析弓网电弧特性,其二

是不同实验条件下的弓网电弧数据用于电弧识别,能够
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避免偶然性问题,使结论更有说服力[18] 。 设置每组采样

3 min,采样频率为 10
 

kHz,试验方案如表 1 所示。
表 1　 实验参数设置

Table
 

1　 Experimental
 

parameter
 

settings
参数 数值

回路电流 / A 141. 4
滑板往复速度 / (m·s-1 ) 0. 2

接触压力 / N 40 / 60
电压等级 / V AC

 

36
碳滑板-接触线相对速度 / (km·h-1 ) 100

暴风机气流速度 / (km·h-1 ) 89. 3 / 135. 8

　 　 以 40 N、89. 3 km / h 实验组为例,实验模拟结果如图

9 所示。

图 9　 接触电压波形

Fig. 9　 Contact
 

voltage
 

waveform

当不产生电弧时,由于碳滑板和接触网紧密接触,因
此接触电压几乎为 0

 

V,然而当产生电弧时,由于接触网

与碳滑板之间存在间隙,因此接触电压不再为 0
 

V,可以

从图 9 中看出在 0. 1
 

s 到 0. 3
 

s,0. 5
 

s 到 0. 6
 

s,以及 0. 7
 

s
到 0. 9

 

s 时间段为燃弧期间。

8　 模型验证

8. 1　 数据预处理

　 　 将采集到的一维故障电弧数据经过 GAF 转化为二

维特征图[19-21] 。 以 40 N、89. 3 km / h 实验组为例,数据划

分如表 2 所示。
表 2　 数据划分

Table
 

2　 Data
 

segmentation
状态 类别 训练集 测试集

正常接触 1 80 20
燃弧 2 80 20

　 　 从图 10 可以看出,当迭代次数为 25 次时,训练集准

确率就已经达到达到 100%,损失值基本为 0。

图 10　 训练曲线

Fig. 10
 

Training
 

curv

图 11　 混淆矩阵

Fig. 11　 Confusion
 

matrix

混淆矩阵结果如图 11 所示,从图可以看出所提模型

电弧识别准确率达到 97. 5%,对电弧故障有很好的识别

作用。 模型有较强鲁棒性时能够容忍一定程度的错误或

噪声,而不会导致系统崩溃或产生严重错误的结果,这种

容错性对于处理现实世界中的不完美数据至关重要[22] 。
列车在运行过程中环境复杂,弓网之间条件也时刻在变

化,尤其是气流速度和接触压力,因此使用不同实验条件

下的电压数据检验模型鲁棒性非常必要。 训练模型时使

用数 据 实 验 条 件 为 接 触 压 力 40 N 气 流 速 度 为

89. 3 km / h。 为了对比,使用训练好的模型识别 40 N、
135. 8 km / h,60 N、135. 8 km / h,并标记为实验一,实验二,
实验三。 3 组实验在测试集上的 t-SNE 分类可视化[23] 如

图 12 所示。
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图 12　 t-SNE 分类可视化

Fig. 12　 t-SNE
 

classification
 

visualization

从图 12(a)和图 12(c)可看出实验一和实验三分类

效果明显,从图 12( b)可以看出仅实验二数据的分类没

有形成较为紧凑的簇。 从整体上看,提出的弓网电弧故

障检测模型能够较好的对不同实验条件下的故障数据和

正常数据进行分类,具有较强的鲁棒性。
8. 2　 与其他模型对比

　 　 为验证所提方法的性能,在相同环境和数据集情况

下,将所提模型与 ResNet 模型、1D-CNN 模型、1D-CNN-
Attention 进行对比。 数据划分如表 3 所示。

表 3　 实验数据划分

Table
 

3　 Experimental
 

data
 

division

实验 状态 类别 训练集 测试集

实验一
正常 1 80 20
燃弧 2 80 20

实验二
正常 3 80 20
燃弧 4 80 20

实验三
正常 5 80 20
燃弧 6 80 20

图 13　 1D-CNN 模型

Fig. 13　 1D-CNN
 

model

图 14　 ResNet 模型

Fig. 14　 ResNet
 

model

　 　 从混淆矩阵图 13 ~ 16 和准确率柱状图 17 来看,1D-
CNN 模型的准确率最低,准确度为 95%,ResNet 模型的

准确 率 为 96. 67%, 1D-CNN-Attention 模 型 准 确 率 为

97. 5%,所提模型准确率为 99. 17%,基本实现对故障类

别的准确识别。

9　 结　 论

　 　 为了更加符合铁路列车在实际运行时弓网电弧状

态,考虑了高速气流对电弧的影响。 利用空气动力学原

理,计算出了高速气流与接触压力之间的关系。 通过实

验模拟发现,当产生弓网电弧故障时接触电压不在为

0
 

V。 根据这一特性,提出了改进黑翅鸢算法( IBKA) 的

1D-2D-GAF-PCNN-GRU-MSA 弓网电弧故障检测模型。
该方法可直接对原始一维电压时序信号进行检测,避免

了降噪和降维过程造成特征的损失。 同时,将一维时序

信号特征和二维图像特征进行融合,克服了在单一维度



　 第 10 期 改进黑翅鸢算法的 1D-2D-GAF-PCNN-GRU-MSA 弓网电弧检测应用 ·209　　 ·

图 15　 1D-CNN-Attention 模型

Fig. 15　 1D-CNN-Attention
 

model

图 16　 所提模型

Fig. 16　 The
 

proposed
 

model

情况下模型对不同数据检测时发生准确率下降的问题,
提高模型的鲁棒性。 然后,针对模型难以确定的学习率,
卷积核大小,GRU 神经元个数,利用 IBKA 算法进行超参

数优化,优化模型架构。 结合多头自注意力机制有效把

握提取特征的贡献程度,提高模型准确性。 最后,与其他

3 种模型进行弓网电弧故障检测,发现所提方法具有更

高的准确性和较好的鲁棒性。
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