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摘　 要:为解决燃气管道巡检四足机器人的地图构建问题,提出一种改进沙猫群算法优化的 ISCSO-FastSLAM 算法。 首先,引入

柯西变异策略提高沙猫群算法跳出局部最优的能力,加快收敛速度,并加入自适应遗传参数增强沙猫群算法的稳定性。 再通过

改进沙猫群算法输出的位置预测最优解来更新 FastSLAM 算法的预测粒子集,从而提高估计精度。 同时利用低权重粒子优化策

略代替粒子滤波中原来的重采样步骤,来保证粒子的多样性。 然后搭建不同的仿真环境,将多种算法进行仿真对比,仿真结果

表明:在 20
 

m×20
 

m 的仿真环境下,ISCSO-FastSLAM 算法相比 WOA-FastSLAM 算法对地图的构建更为准确,对机器人位置和环

境路标的估计误差分别减小了 17. 1%和 23. 3%。 最后,利用四足机器人在 60
 

m×100
 

m 大小的居民区进行建图实验,实验结果

表明:相比 FastSLAM 算法和 WOA-FastSLAM 算法,ISCSO-FastSLAM 算法能够构建更准确的居民区巡检地图,对阀门井、调压箱

等巡检关键位置的估计误差分别减小了 16. 2%和 6. 0%。
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Abstract:

 

To
 

solve
 

the
 

map
 

construction
 

problem
 

of
 

the
 

quadruped
 

robot
 

for
 

natural
 

gas
 

pipeline
 

inspection,
 

an
 

ISCSO-FastSLAM
 

algorithm
 

optimized
 

by
 

the
 

improved
 

sand
 

cat
 

swarm
 

algorithm
 

is
 

proposed.
 

Firstly,
 

the
 

Cauchy
 

variation
 

strategy
 

is
 

introduced
 

to
 

improve
 

the
 

ability
 

of
 

the
 

sand
 

cat
 

swarm
 

algorithm
 

to
 

jump
 

out
 

of
 

the
 

local
 

optimum
 

and
 

accelerate
 

the
 

convergence
 

speed,
 

and
 

the
 

adaptive
 

genetic
 

parameters
 

are
 

added
 

to
 

improve
 

the
 

stability
 

of
 

the
 

sand
 

cat
 

swarm
 

algorithm.
 

Then,
 

the
 

predicted
 

particle
 

set
 

of
 

the
 

FastSLAM
 

algorithm
 

is
 

updated
 

by
 

improving
 

the
 

optimal
 

solution
 

of
 

the
 

position
 

prediction
 

output
 

of
 

the
 

sand
 

cat
 

swarm
 

algorithm
 

to
 

improve
 

the
 

estimation
 

accuracy.
 

Meanwhile,
 

the
 

low
 

weight
 

particle
 

optimization
 

strategy
 

is
 

used
 

to
 

replace
 

the
 

original
 

resampling
 

step
 

in
 

particle
 

filtering
 

to
 

ensure
 

the
 

diversity
 

of
 

particles.
 

Then,
 

different
 

simulation
 

environments
 

are
 

constructed
 

to
 

compare
 

the
 

different
 

algorithms,
 

and
 

the
 

simulation
 

results
 

show
 

that
 

the
 

ISCSO-FastSLAM
 

algorithm
 

constructs
 

the
 

map
 

more
 

accurately
 

than
 

the
 

WOA-FastSLAM
 

algorithm,
 

and
 

the
 

estimation
 

errors
 

of
 

the
 

robot
 

position
 

and
 

the
 

environmental
 

signposts
 

are
 

reduced
 

by
 

17. 1%
 

and
 

23. 3%,
 

respectively,
 

under
 

the
 

simulation
 

environment
 

of
 

20
 

m × 20
 

m.
 

Finally,
 

the
 

quadruped
 

robot
 

is
 

used
 

to
 

conduct
 

map
 

construction
 

experiments
 

in
 

a
 

residential
 

area
 

of
 

60
 

m×100
 

m,
 

and
 

the
 

experimental
 

results
 

show
 

that,
 

compared
 

with
 

the
 

FastSLAM
 

algorithm
 

and
 

the
 

WOA-FastSLAM
 

algorithm,
 

the
 

ISCSO-FastSLAM
 

algorithm
 

is
 

able
 

to
 

construct
 

a
 

more
 

accurate
 

map
 

of
 

the
 

residential
 

area
 

inspection,
 

and
 

the
 

estimation
 

errors
 

of
 

the
 

key
 

inspection
 

locations
 

such
 

as
 

valve
 

wells
 

and
 

regulator
 

boxes
 

are
 

reduced
 

by
 

16. 2%
 

and
 

6. 0%,
 

respectively.
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algorithm
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0　 引　 言

　 　 随着燃气用户规模逐渐扩大、燃气管网使用年限增

长,在城镇燃气管网中,尤其是阀门井、变压箱等环节极

易发生燃气泄漏[1-2] ,引发火灾、爆炸等事故,严重威胁人

民生命财产安全[3] 。 城镇燃气管道覆盖范围的逐渐扩大

和能源安全要求的提高,使得传统的人工巡检方式已不

能满足日常燃气安全监管的需要,相关人员开始利用移

动平台(如无人机( UAV) [4-5] 、车辆[6] 等) 搭载如基于可

调谐半导体激光吸收光谱( tunable
 

diode
 

laser
 

absorption
 

spectroscopy,TDLAS) 的等甲烷气体传感器巡检燃气泄

漏。 四足机器人具有环境适应性强、越障能力强等优

点[7] 。 因此,使用四足机器人,在环境复杂度较高的城镇

居民小区,对燃气管道的阀门井、变压箱等位置进行泄漏

巡检是一种有效的巡检方法。
目前,如何在城市居民区进行精确的地图构建是实

现燃气管道巡检四足机器人自主巡检的关键问题之一。
同步定位与地图构建技术( simultaneous

 

localization
 

and
 

mapping,SLAM)便是为解决此类问题而被提出的一种重

要技术,至今已提出包括卡尔曼滤波、LOAM、FastSLAM
等诸多算法[8] 。 Grisetti 团队将 FastSLAM 算法用于构建

栅格地图并应用到实体机器人中,形成经典的 Gmapping
算法[9] 。 Gmapping 算法在室内小场景中有较好的建图

效果,但在城镇居民区等大环境中,Gmapping 算法的标

准粒子滤波器随着时间的推移会出现权值退化现象,虽
然重采样过程能缓解权值退化,但又会导致粒子多样性

缺失[10] 。 针对 FastSLAM 存在的问题,学者们提出了利

用群优化算法提高 FastSLAM 中的估计精度的方法。 其

中,有学者通过狮群算法(lion
 

swarm
 

optimization,
 

LSO)、
鲸群算法( whale

 

optimization
 

algorithm,
 

WOA) 等群智能

算法优化 FastSLAM 中的重要性采样过程,对从先验密度

函数采样的粒子分布进行优化,从而缓解粒子权值退

化[11-13] 。 但上述算法在优化过程中易陷入局部最优,且
在计算过程中仍存在盲目搜索等问题[14] 。 还有学者采

用量子粒子群算法( quantum
 

particle
 

swarm
 

optimization,
 

QPSO)优化 FastSLAM 中的重采样过程,从而避免粒子多

样性缺失,但其对缓解粒子退化问题效果不佳[15] 。 沙猫

群优化算法( sand
 

cat
 

swarm
 

optimization,
 

SCSO)是模拟

沙猫捕食猎物的生存行为而被提出的一种群智能优化

算法[16] ,相比于遗传算法、粒子群算法等,计算过程简

单,具有较强的寻优性能,但仍可能陷入局部最优,直
接应用于 FastSLAM 中的粒子滤波无法很好的提高预

测精度。
为解决四足机器人在城镇燃气管网阀门井自主巡检

过程中的地图构建问题,提出一种改进沙猫群算法优化

的 SLAM 算法。 首先,引入柯西变异策略和自适应遗传

参数 对 SCSO 算 法 进 行 改 进, 然 后 根 据 改 进 SCSO
(improved

 

Sand
 

cat
 

swarm
 

optimization,
 

ISCSO)输出的最

优解调整 FastSLAM 中的预测粒子集,改善粒子权值退化

现象,并通过优化低权重粒子代替原来的重采样步骤来

避免粒子多样性缺失。 其次,通过仿真对比了改进算法

与传统算法的性能。 最后在城镇居民区进行了现场实

验,验证改进算法的有效性。

1　 改进沙猫群优化算法

1. 1　 柯西变异策略

　 　 SCSO 算法模拟了沙猫搜寻猎物和攻击猎物两种行

为[17] 。 在 SCSO 算法后期,沙猫将会逐渐靠近猎物,容易

陷入局部最优,为提高其跳出局部最优的能力,采用柯西

变异策略来改进 SCSO 算法。 柯西变异来源于连续型概

率分布中的柯西分布[18] 。 在开发阶段结束,求得当前最

优解后,对最优个体根据式(1)进行变异操作,对比变异

前后的位置,选择更好的位置作为新的最优个体。
Xnew = Xbc + Xbc × Cauchy(0,1) (1)
其中,Xbc 代表当前最优个体,Xnew 代表变异后的个

体,Cauchy(0,1)代表标准柯西分布。
1. 2　 自适应遗传参数

　 　 沙猫群优化算法在搜索猎物和攻击猎物时,都是通

过随机角度进行的,容易陷入盲目搜索,降低算法的稳定

性和收敛速度。 为此,在 SCSO 算法的迭代过程中加入

参数 S[19] ,且 S= n,n 小于沙猫群的种群数量 N,其作用

是保留第 t 代中较优的 n 个个体,替换第 t+1 代种群中较

差的 n 个个体,使下一代整体优于上一代,保证算法的稳

定性。 参考文献[20]构建一个非线性函数,以实现 S 值

的自适应调整,在保证稳定性的同时提高算法的收敛速

度,表达式如下:

S = ceil (N - 1)·sin( t·π
2·T

)é

ë
êê

ù

û
úú (2)

式中:N 为种群数量; t 为当前迭代次数;T 为最大迭代

次数。

2　 ISCSO-FastSALM

2. 1　 粒子优化策略

　 　 针对 FastSLAM 因重采样导致粒子贫乏而降低算法

性能的问题,提出粒子优化策略:
1)首先计算有效粒子数[21] Neff ,判断是否执行粒子

优化步骤,Neff 表达式如下:

Neff = 1 / ∑
N

i = 1
(ω i)

2 (3)
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其中,ω i 是归一化后的权值。
2)当 Neff 小于设定阈值 N th 时,将粒子按权重降序排

列,设高权重的粒子数为 M,M 为小于 Neff 的最大整数,
将粒子集 P[N] 划分为高权重粒子集 P[M]

a 和低权重粒子

集 P[N-M]
a ,按如下表达式利用高权重粒子优化低权重

粒子:
P i

c = P i
b + α(Prand

a - P i
b) (4)

式中:α 是[0,1]之间的随机数;Prand
a 是从 P[M]

a 中随机选

取的一个粒子,重组后的粒子集包含 P[M]
a 和 P[N-M]

a 。
2. 2　 改进沙猫群算法优化的 FastSALM
　 　 针对传统 FastSLAM 算法需要增加粒子数提高精度

以及重采样导致的粒子贫乏的问题,引入 ISCSO 算法与

粒子优化策略, 对传统 FastSLAM 进行改进。 为确保

FastSLAM 的估计精度,引入最新的观测值来构建沙猫的

适应度函数 f,表达式如下:

f = exp[ - 1
2R

(Z t - Zpre )] (5)

其中,Z t 为 t 时刻最新的观测值,zpre 为 t 时刻滤波器

的预测值,R 为量测噪声方差。
基于改进沙猫群算法优化的 FastSALM 算法步骤为:
步骤 1) 随机采样 N 个粒子,并记录最新的观测

值 zt ;
步骤 2)进行 ISCSO 优化;
步骤 3)根据 ISCSO 输出的最优解 Pbest 更新粒子集

P[N] 分布;
步骤 4)计算每个粒子的权重 ω i ;
步骤 5)计算有效粒子数 Neff ,若 Neff 小于设定阈值

N th 时执行步骤 6,否则转到步骤 7);
步骤 6)根据式(4)对 P[N] 进行优化;
步骤 7)输出预测位姿 PEst ,并更新地图。
其中,ISCSO 优化的步骤为:
步骤 1)根据粒子集 P[N] 初始化沙猫种群 X[N] ;
步骤 2)对所有沙猫个体 X i 根据式(5)计算适应度

值 f i;
步骤 3)搜索猎物阶段,根据适应度值 f i 更新每个沙

猫个体 X i 位置;
步骤 4)攻击猎物阶段,生成一个随机位置 Xrand,再

根据随机位置 Xrand 更新沙猫个体的位置;
步骤 5)对更新后的沙猫个体 X i 计算适应度值 f i,筛

选最优个体 Xbc ,根据式(1)将最优个体变异为 Xnc ,选择

变异前后适应度更好的个体作为新的最优个体 XNewbc ;
步骤 6)判断是否达到最大迭代次数 T,若达到则输

出 XNewbc ,否则返回步骤 3);

3　 ISCSO-SLAM 算法仿真

3. 1　 仿真环境

　 　 将 FastSALM、基于鲸群算法改进的 FastSLAM 算法

( WOA-FastSLAM )、 基 于 原 始 沙 猫 群 算 法 改 进 的

FastSLAM 算法( SCSO-FastSALM) 与基于改进沙猫群算

法优化的 FastSALM 算法( ISCSO-FastSALM)进行仿真对

比,试验平台为 MATLAB
 

R2018a。
模拟四足机器人在城镇燃气阀门井巡检场景中进行

建图搭建了 20
 

m×20 m 的仿真环境,仿真环境如图 1 所

示,图 1(a)为圆形路径仿真环境,图 1(b)为非圆形路径

仿真环境。 其中圆圈代表机器人巡检路径上的阀门井,
星形标记代表障碍物等环境路标。

图 1　 仿真环境

Fig. 1　 Simulation
 

environments

仿真的相关参数设置为:机器人移动速度 0. 5
 

m / s;
采样间隔 0. 1

 

s;激光雷达最大量程 10
 

m;观测距离误差

0. 5
 

m;观测角度误差 5
 

rad;粒子数为 20。
3. 2　 圆形路径仿真

　 　 首先进行圆形路径仿真环境下的测试,仿真结果如

图 2 所示。 由图 2( a)可知,传统 FastSLAM 算法由于累

积误差,机器人轨迹与路标的估计误差随着时间的增加
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图 2　 圆形路径仿真结果

Fig. 2　 Circular
 

path
 

simulation
 

results

而增大。 在图 2 ( b) 和图 2 ( c) 中, WOA-FastSLAM 和

SCSO-FastSLAM 由于群智能算法的强寻优特性,对机器

人的轨迹与环境路标的估计误差有着明显的降低。 而由

图 2(d) 可知,ISCSO-FastSLAM 算法估计的机器人轨迹

与真实路径最为接近,且估计路标与实际路标位置也基

本一致,其原因在于 ISCSO-FastSLAM 利用 ISCSO 算法调

整了预测粒子集,能有效提高算法的估计性能,而粒子优

化策略则保证了粒子的多样性。
将 4 种算法对机器人位置估计误差与环境路标的估

计误差进行对比,如图 3、图 4 所示。 由图 3 与图 4 可知,
相比于 FastSALM、WOA-FastSLAM 和 SCSO-FastSALM 算

法,ISCSO-FastSALM 算法的对机器人的位置估计误差和

对环境路标的估计误差都是最小。

图 3　 圆形路径仿真位置估计误差

Fig. 3　 Position
 

estimation
 

error
 

in
 

circular
 

path
 

simulation

图 4　 圆形路径仿真路标估计误差

Fig. 4　 Circular
 

path
 

simulation
 

landmark
 

estimation
 

error

3. 3　 非圆形路径仿真

　 　 在非圆形路径仿真环境下进行仿真,结果如图 5 所

示。 由图 5(a)可知,FastSLAM 效果仍是 4 种算法中最差

的。 从图 5 ( b ) 和 ( c ) 可以看出, WOA-FastSLAM 与

SCSO-FastSLAM 的 SLAM 效果总体优于 FastSLAM,但在

图 5(b)和(c)中圈出的区域都出现了较大偏差。 而从图

5(d)可以看出,ISCSO-FastSLAM 的效果要优于其他 3 种
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图 5　 非圆形路径仿真结果

Fig. 5　 Non-circular
 

path
 

simulation
 

results

算法,且在圆圈所在的狭窄区域也未出现较大误差,估计

路径与估计路标和真实情况基本保持一致。

将 4 种算法对机器人位置估计误差与环境路标的估

计误差进行对比,如图 6、图 7 所示。 由图 6 可以看出,
FastSLAM 的误差最大, 大部分误差在 0. 3 ~ 0. 7

 

m。
WOA-FastSLAM 与 SCSO-FastSLAM 的 效 果 优 于

FastSLAM,大部分误差保持在 0. 1 ~ 0. 3
 

m,但在 200 ~ 500
的时间段内,二者的误差达到了 0. 9 m 左右。 ISCSO-
FastSLAM 的误差最小,基本都维持在 0. 2 m 的误差以

内,仅在 200 ~ 500 的时间段内误差在 0. 4 m 左右。 而从

图 7 中同样可以看出 ISCSO-FastSLAM 的误差是 4 种算

法中最小的,由此说明 ISCSO-FastSLAM 算法的效果要优

于其他 3 种算法。

图 6　 非圆形路径仿真位置估计误差

Fig. 6　 Position
 

estimation
 

error
 

in
 

non-circular
 

path
 

simulation

图 7　 非圆形路径仿真路标估计误差

Fig. 7　 Landmark
 

estimation
 

error
 

in
 

non-circular
 

path
 

simulation

3. 4　 算法重复性测试

　 　 为避免实验结果的偶然性,在相同条件下分别进行
20 次独立仿真实验并取均值,采用均方根误差( RMSE)
作为算法的衡量指标[22] ,表达式为:
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RMSE = 1
N ∑

N

i = 1
(x i -x̂ i)

2 (6)

4 种算法仿真实验的 RMSE 对比如表 1 所示。 由表

1 可知, FastSALM 算法的误差最大,当粒子数相同时

WOA-FastSLAM 和 SCSO-FastSALM 算法的估计误差相。
以粒子数为 10 时为例,FastSALM 算法的位置和路标估

计误差在 0. 6 ~ 0. 7
 

m,WOA-FastSLAM 的位置和路标估

计误差在 0. 35
 

m 左右,SCSO-FastSALM 算法的位置和路

标估计误差在 0. 29 ~ 0. 32
 

m,而 ISCSO-FastSALM 的估计

误差在 4 种算法中最小,误差在 0. 19 ~ 0. 21
 

m。 在粒子

数为 100 时,ISCSO-FastSALM 与 FastSALM 相比对位置

和路标估计误差减小了 53. 2% 和 60. 5%; 与 WOA-
FastSALM 相比,估计误差分别减小了 17. 1%和 23. 3%;
与 SCSO-FastSALM 相比,估计误差分别减小了 7. 9%和

19. 6%。 此外, ISCSO-FastSALM 只 用 10 个 粒 子 就 比

FastSALM 使用 100 个粒子的估计误差更小,由此可以看

出 ISCSO-FastSALM 算法的准确性与稳定性优于其他 3
种算法。

表 1　 位置与地标估计误差

Table
 

1　 RMSE
 

in
 

location
 

and
 

landmark
 

estimation
粒子数 算法 位置 RMSE / m 路标 RMSE / m

10

FastSALM 0. 640
 

6 0. 677
 

1
WOA-FastSLAM 0. 349

 

1 0. 341
 

1
SCSO-FastSALM 0. 314

 

2 0. 298
 

7
ISCSO-FastSALM 0. 208

 

8 0. 192
 

1

50

FastSALM 0. 479
 

1 0. 538
 

7
WOA-FastSLAM 0. 231

 

9 0. 242
 

9
SCSO-FastSALM 0. 212

 

2 0. 236
 

9
ISCSO-FastSALM 0. 191

 

7 0. 173
 

1

100

FastSALM 0. 377
 

3 0. 427
 

6
WOA-FastSLAM 0. 212

 

7 0. 220
 

5
SCSO-FastSALM 0. 191

 

6 0. 210
 

3
ISCSO-FastSALM 0. 176

 

4 0. 169
 

1

4　 巡检环境地图构建实验

　 　 为验证算法的有效性,本节使用四足机器人,在巡检

现场进行环境地图构建实验。 四足机器人如图 8 所示,
其搭载 了 激 光 雷 达 与 TDLAS 传 感 器, 并 且 安 装 了

Ubuntu18. 04 系 统, 配 置 了 机 器 人 操 作 系 统 ( robot
 

operating
 

system,
 

ROS)。
如图 9(a)所示,试验场地为某乡镇居民小区内,图

9(b)所示为该区域的埋地燃气管道布线图,其中圆圈为

阀门井与调压箱所在位置。 根据阀门井与调压箱位置选

取从变压箱#1 经过变压箱#2 再到阀门井#3 的 60
 

m ×
100

 

m 直角街道(图 9 ( a) 中线框圈定区域) 作为实验

区域。
分 别 采 用 FastSALM 算 法 和 WOA-FastSLAM 与

图 8　 四足机器人

Fig. 8　 Quadruped
 

robot

图 9　 测试场地

Fig. 9　 Test
 

site

ISCSO-FastSLAM 对实验区域进行巡检环境地图构建,结
果如图 10 所示。 在图 10( a) 中,传统 FastSALM 算法所

构建的地图在黑色矩形方框 1、2 中的两处放大的区域发

生了重叠现象,并且从变压箱#2 再到阀门井#3 的街道发

生了变形弯曲。 在图 10( b) 中,WOA-FastSLAM 所构建

的地图中的街道并未发生明显的变形,但在图 10( b)黑

色矩形方框 1 中放大的区域依然存在重叠与结构错乱的

问题。 而如图 10(c)所示,利用 ISCSO-FastSLAM 算法构

建的地图更为清晰,直线度更好,在拐角处 1 也未出现变

形等现象。 这是因为 ISCSO-FastSLAM 算法利用改进的

沙猫群算法优化了传统 FastSLAM 算法中的粒子滤波环
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节,使其能够更好的预测与估计四足机器人的实际位置,
从而构建更为精确的环境地图,利于四足机器人后续的

路径规划与自主巡检。

图 10　 巡检环境建图实验结果

Fig. 10　 Inspection
 

environment
 

mapping
 

experiment
 

results

在实验测试环境中树木较稀疏,RTK-GNSS 信号不

易被遮挡,其定位精度较为可靠。 因此可以将变压箱#1、
变压箱#2 和阀门井#3 这 3 个位置的 RTK-GNSS 定位数

据作为真值。 以建图起点作为坐标原点,利用 ImageJ 软

件获取 3 种算法所构建地图中相应位置的图测值,便能

计算出 3 种算法的估计误差,结果记录在表 2 中。 如表 2
所示,FastSALM 算法对 3 处阀门井与变压箱位置的估计

误差在 1. 0 ~ 1. 6 m 范围内,WOA-FastSALM 对 3 处阀门

井与变压箱位置的估计误差在 1. 0 ~ 1. 3 m 范围内,
ISCSO-FastSALM 算法对 3 处阀门井与变压箱位置的估

计误差在 0. 9 ~ 1. 2 m 范围内。 ISCSO-FastSALM 算法相

比于 FastSALM 算法,误差减小了 16. 2%,相比于 WOA-
FastSALM 算法,误差减小了 6. 0%。

表 2　 3 种算法对变压箱#1、#2 和阀门井#3 位置估计误差

Table
 

2　 Position
 

estimation
 

errors
 

of
 

the
 

three
 

algorithms
for

 

regulator
 

boxes
 

#1,
 

#2,
 

and
 

valve
 

well
 

#3

位置
FastSALM
误差 / m

WOA-FastSALM
误差 / m

ISCSO-FastSALM
误差 / m

变压箱#1 1. 05 1. 01 0. 92
变压箱#2 1. 31 1. 23 1. 17
阀门井#3 1. 58 1. 24 1. 18

　 　 在对现场进行地图构建后,在变压箱#2 处模拟燃气

泄漏,根据如图 11 所示的地图利用四足机器人进行了对

变压箱#1、变压箱#2 和阀门井#3 所在区域的路径规划与

自主 巡 检, 并 在 变 压 箱 # 2 附 近 测 得 浓 度 为 540 ~
1

 

486
 

mg / m3 的燃气泄漏,验证了 ISCSO-FastSALM 算法

构建的地图应用于城镇燃气管道阀门井等处的燃气巡检

四足机器人自主巡检的有效性。

图 11　 巡检地图

Fig. 11　 Inspection
 

map

5　 结　 论

　 　 为实现燃气管道巡检四足机器人的自主巡检,首先

便需要对巡检现场进行地图构建。 通过引入自适应遗传

参数和柯西变异策略改进沙猫群优化算法容易陷入局部

最优的缺点并增加算法的稳定性。 再利用改进沙猫群算

法优化 FastSALM 算法中的预测粒子集,并对低权重粒子

进行优化重组,从而减少算法对环境地图的估计误差。
仿真结果表明 ISCSO-FastSALM 算法能有效减少地图构

建的误差,与 WOA-FastSALM 相比对位置和路标估计误

差减小了 17. 1%和 23. 3%。 最后,在某居民区( 60
 

m ×
100

 

m 范围)利用四足机器人进行了现场建图实验,结果

表明 ISCSO-FastSALM 算法相比于传统算法可更好地构

建巡检现场的环境地图。 在城市居民区进行精确的地图
构建是实现燃气管道巡检四足机器人自主巡检的前提。
基于 ISCSO-FastSALM 算法的建图结果,结合定位与路径

规划技术,巡检四足机器人能更好的实现对城市居民区

内的燃气管道,尤其是阀门井、变压箱等薄弱环节的自主

巡检,保障城镇居民燃气使用安全。
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