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轮毂电机轴承故障的 MIWF-2DCNN 诊断方法∗

戈　 淳　 宋子为　 商嘉桐　 薛红涛　 王天鸶

(江苏大学汽车与交通工程学院　 镇江　 212013)

摘　 要:为了有效监测复杂工况下分布式驱动电动汽车用轮毂电机的运行状态,提高其轴承故障的识别准确率,提出一种基于

多信息加权融合和二维卷积神经网络(MIWF-2DCNN)的故障诊断方法。 首先,将轮毂电机轴承的多方位振动监测信号分别进

行二维数据重构和时频变换,逐一转化成灰度图后按照方位顺序堆叠成时域灰度图集和时频域灰度图集,作为故障诊断模型的

输入;其次,将高效通道注意力机制(ECANet)的网络结构进行改进,提出了改进高效通道注意力机制(iECANet),其核心思想是

在全局平均池化(GAP)基础上添加上全局最大池化(GMP)分支,基于有效信息的贡献度更新各分支的权重系数,进而提取时

域和时频域的故障特征,实现了多信息加权融合;再次,利用 GMP 简化传统二维卷积神经网络(2DCNN)模型的一层全连接层,
实现了网络轻量化。 最后,基于轮毂电机不同工况下实验数据,进行同一工况下对应验证、不同工况下交叉验证及消融实验验

证。 结果表明所提的 MIWF-2DCNN 模型能够有效提取轮毂电机轴承故障特征,在复杂环境和多变工况下故障识别率保持在

95%以上,整体优于传统的 LeNet-5、1DCNN 模型。
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Abstract:
 

A
 

fault
 

diagnosis
 

method
 

based
 

on
 

multi-information
 

weighted
 

fusion
 

and
 

two-dimensional
 

convolutional
 

neural
 

network
 

(MIWF-2DCNN)
 

is
 

proposed
 

to
 

effectively
 

monitor
 

the
 

operating
 

status
 

of
 

hub
 

motors
 

for
 

distributed
 

electric
 

vehicles
 

under
 

complex
 

operating
 

conditions
 

and
 

improve
 

the
 

accuracy
 

of
 

bearing
 

fault
 

identification.
 

Firstly,
 

the
 

multi-directional
 

vibration
 

monitoring
 

signals
 

of
 

in-wheel
 

motor
 

bearing
 

were
 

reconstructed
 

by
 

two-dimensional
 

data
 

reconstruction
 

and
 

time-frequency
 

transformation
 

respectively,
 

and
 

then
 

converted
 

into
 

grayscale
 

images
 

one
 

by
 

one.
 

According
 

to
 

the
 

direction
 

order,
 

the
 

time-domain
 

grayscale
 

atlas
 

and
 

time-frequency
 

domain
 

grayscale
 

atlas
 

were
 

stacked
 

as
 

the
 

input
 

of
 

the
 

fault
 

diagnosis
 

model.
 

Secondly,
 

the
 

network
 

structure
 

of
 

efficient
 

channel
 

attention
 

mechanism
 

(ECANet)
 

was
 

improved,
 

and
 

the
 

improved
 

efficient
 

channel
 

attention
 

mechanism
 

(iECANet)
 

was
 

proposed.
 

The
 

core
 

idea
 

of
 

IECANET
 

was
 

to
 

add
 

a
 

global
 

maximum
 

pooling
 

(GMP)
 

branch
 

on
 

the
 

basis
 

of
 

global
 

average
 

pooling
 

(GAP),
 

and
 

update
 

the
 

weight
 

coefficient
 

of
 

each
 

branch
 

based
 

on
 

the
 

contribution
 

of
 

effective
 

information.
 

Then,
 

the
 

fault
 

features
 

in
 

time
 

domain
 

and
 

time-
frequency

 

domain
 

were
 

extracted
 

to
 

realize
 

the
 

weighted
 

fusion
 

of
 

multi-information.
 

Thirdly,
 

GMP
 

was
 

used
 

to
 

simplify
 

a
 

fully
 

connected
 

layer
 

of
 

the
 

traditional
 

two-dimensional
 

convolutional
 

neural
 

network
 

(2DCNN)
 

model
 

to
 

achieve
 

network
 

lightweight.
 

Finally,
 

based
 

on
 

the
 

experimental
 

data
 

of
 

in-wheel
 

motor
 

under
 

different
 

working
 

conditions,
 

the
 

corresponding
 

verification
 

under
 

the
 

same
 

working
 

condition,
 

cross
 

validation
 

under
 

different
 

working
 

conditions
 

and
 

ablation
 

experimental
 

verification
 

were
 

carried
 

out.
 

The
 

results
 

show
 

that
 

the
 

proposed
 

MIWF-2DCNN
 

model
 

can
 

effectively
 

extract
 

the
 

fault
 

features
 

of
 

in-wheel
 

motor
 

bearing,
 

and
 

the
 

fault
 

recognition
 

rate
 

remains
 

above
 

95%
 

in
 

complex
 

environments
 

and
 

variable
 

working
 

conditions,
 

which
 

is
 

better
 

than
 

the
 

traditional
 

LeNet-5
 

and
 

1DCNN
 

models.
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0　 引　 言

　 　 随着当前社会对可持续交通和环保技术的日益关

注,电动汽车的普及成为解决交通污染和能源可持续利

用的关键手段。 轮毂电机驱动系统具有效率高、响应快、
全时线控等绝对优势,成为新能源汽车行业发展的研究

热点[1-3] 。 轮毂电机与其他电机相比,一方面由于其外部

环境的复杂多变,不仅加剧了悬架和路面对轮毂电机定、
转子和轴承的冲击,而且外部的间歇性强干扰也会对电

机产生影响。 另一方面由于其特殊的安装位置,为了防

止地面异物进入电机,影响电机正常运行,轮毂电机需要

做到良好的密封性;然而由于轮毂电机运行转速与负载

的多变,会产生较高的热量,需要进行一定散热措施,与
其密封性产生了一定的矛盾。 因此,由于复杂多变的外

部环境和特殊的安装位置,轮毂电机极易诱发故障,严重

时造成车辆安全事故[4] 。 因此,亟需建立有效的轮毂电

机故障诊断系统在线监测其运行状态。
近年来,国内外研究学者针对电机等复杂机电设备

的故障诊断进行了大量探索研究,取得了一定的研究成

果。 传统轴承故障诊断方法通常以信号处理和特征提取

为基础, 采用时域分析[5-8] 、 频域分析[9] 和时频域分

析[10-12]等技术,以捕捉电机轴承故障所产生的振动特征。
谷然 等[13] 提 出 一 种 改 进 的 自 适 应 变 分 模 态 分 解

(adaptive
 

variational
 

mode
 

decomposition,AVMD)与 Teager
能量谱结合的方法,用于提取轴承微弱故障特征,成功避

免递归分解模式的模态混叠和端点效应现象。 马晨佩

等[14] 利用麻雀搜索算法( sparrow
 

search
 

algorithm,SSA)
对支持向量机( support

 

vector
 

machine,SVM)的惩罚参数

与核参数进行优化,构建了 SSA-SVM 滚动轴承故障诊断

模型。 然而上述方法的诊断准确率容易受先验知识的影

响,丢失部分有用信息,特征模型泛化性和鲁棒性较差。
随着人工智能的发展,研究学者为了克服上述不足,

摆脱对专家知识的依赖,利用深度学习理论搭建故障诊

断模型[15-18] ,实现特征的自适应提取。 卷积神经网络

(convolutional
 

neural
 

network,CNN)是一种常见的深度学

习算法,可以实现端到端的学习,从原始数据直接学习到

最终的故障诊断结果[19] 。 谷玉海等[20] 针对传统故障诊

断方法识别准确率低、泛化能力差的问题,将轴承振动信

号经过经验模态分解得到的频谱图压缩为二值化图像,
输入 CNN 训练模型,在同工况实验中具有较高的诊断准

确率。 肖雄等[21] 提出基于二维灰度图及辅助分类生成

对抗网的数据增强方法。 其中将原始的一维时序信号转

换为二维灰度图,作为模型的输入,有效提高故障识别准

确率及网络训练速度。 王琦等[22] 针对现有智能诊断模

型参数多、识别效率低的问题,提出一种基于改进一维卷

积神经网络的滚动轴承故障识别方法,滚动轴承不同故

障状态识别率较高。
以上方法均采用单一信号的输入方式,且仅考虑单

一时域或时频域,面对复杂变工况场景,故障诊断准确率

较难满足工程需求。 因此,一种多传感器信息及其在多

域内融合思路被提出以解决该问题,包括多方位振动传

感器信息融合,时域和时频域信息融合,并将数据转换为

灰度图的形式,充分发挥 CNN 图像处理的优势,提取多

信息间的共性特征。 此外,通过改进的通道注意力机制

突出故障状态的显著特征。 通过实验结果表明,多信息

加权融合和二维卷积神经网络(multi-information
 

weighted
 

fusion-2DCNN,MIWF-2DCNN)模型有效提高复杂工况下

轮毂电机故障状态识别率,实现轮毂电机的实时运行状

态监测和轴承故障智能诊断。

1　 模型构建原理

1. 1　 二维卷积神经网络

　 　 二维卷积神经网络(2DCNN)是一种深度学习模型,
其关键思想是通过卷积核对输入图像进行滤波,以捕捉

图像中的局部特征。 卷积操作通过在图像上滑动卷积

核,将每个局部区域的像素与卷积核的权重相乘并求和,
生成特征映射。 这种局部连接和权重共享的方式减少了

模型的参数量,提高了计算效率。 同时,卷积操作能够保

留图像的空间结构信息,使模型对平移和尺度变化具有

鲁棒性,二维卷积表达式为:

p( l)
i,j = f(∑ C

l = 1∑
F

m = 1∑
F

n = 1
α( l)

m,nx
( l)
i +m-1,j +n-1 + ω( l)

b )

(1)
式中: p( l)

i,j 为卷积映射后第 l 层特征图的第 i 行第 j 列元

素; x( l)
i +m-1,j +n-1 为卷积映射前特征图的第 i+m-1 行第 i+n

-1 列元素, α( l)
m,n 为卷积核的第 m 行第 n 列权重;C 为特

征图的通道数,F 代表卷积核的矩阵大小, ω( l)
b 为偏置单

元。 f 为激活函数,通常使用 ReLU( x)来增加模型的非

线性,具体如式(2)所示。

ReLU(x) =
x,x > 0
0,x ≤ 0{ (2)

在每层卷积层之后,2DCNN 通常添加一层最大池化

层来减少特征图的维度,保留重要的特征信息并增强模

型对平移和尺度变化的不变性,最大池化表达式如式

(3)所示。
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a( l)
q,r =max

i,j∈ Ω
{p( l)

i,j } (3)

式中: p( l)
i,j 为输入第 l 层特征图池化区域的第 i 行第 j 列

元素, Ω 是对应的池化区域, a( l)
q,r 为输出第 l 层特征图的

第 q 行第 r 列元素。
2DCNN 通过全连接层的神经元与前一层的所有神

经元相连接,赋予适当的权重和偏置,通过 Softmax 函数

将汇集的特征映射转换为具体的预测结果,全连接层可

表达为:

y( l +1)
j = σ(∑ n

i = 1
β( l)
i,j x

( i)
j + b( l)

j ) (4)

式中: β( l)
i,j 为全连接层第 l 层第 i 个神经元与第 l+1 层第 j

个神经元之间的权值; b( l)
j 为偏置项; y( l +1)

j 为全连接层

第 l+1 层第 j 个神经元的输出;σ 为 Sigmoid 激活函数。
1. 2　 全局最大池化

　 　 为了减少模型参数使模型轻量化,提高网络计算效

率,引入全局最大池化( global
 

maximum
 

pooling,GMP)的

方法。 GMP 在通道维度上提取每个特征图的最大特征

点,提取每个通道最显著的特征,达到特征降维目的。 因

此,在模型中采用全局最大池化,以替换一层全连接层,
降低了模型的参数量,提取了更多关键显著特征,使模型

的泛化能力得到提升,GMP 的数学模型如式(5)所示。
v( l) 􀪅􀪅􀪅 max{(x( l)

i,j )} (5)
式中:v( l) 是第 l 层特征图经过 GMP 操作后的特征值, x( l)

i,j

是第 l 层特征图的第 i 行第 j 列元素。
1. 3　 改进高效通道注意力( iECANet)
　 　 通道注意力机制能够有效提升卷积神经网络的性

能,尤其是 Wang 等[23] 提出的 ECANet 模块避免了常见

SE 模块中的维度缩减,有效获取了跨通道交互信息,减
少了有效信息的损失。 所提方法在原始 ECANet 的全局

平均池化(global
 

average
 

pooling,GAP)基础上,添加 GMP
分支,融合 GAP 和 GMP 两个分支结果,获得各特征图的

综合权重,进而突出故障的显著特征,增加有效特征的贡

献度,提高模型的状态识别率。 改进高效通道注意力模

块(iECANet)的基本原理如图 1 所示。

图 1　 改进的高效通道注意力模块

Fig. 1　 Improved
 

efficient
 

channel
 

attention
 

module

假设所有的特征图组成的集合为特征图集,记为 X,

第 l( l
 

=
 

1,
 

2,
 

…,
 

C)个特征图看作特征图集的第 l 层,
其第 i 行第 j 列元素为 x( l)

i,j ,则基于 iECANet 计算各个特

征图的综合权重过程如下:
1)对输入特征图集进行 GMP 和 GAP 操作。 GMP

如式(5)所示,GAP 表达式如式(6)所示。

u( l) = 1
W × H ∑

W,H

i = 1,j = 1
x( l)
i,j (6)

式中:W、H 分别代表输入特征图的宽度和长度,u( l) 代表

GMP 操作后特征图集第 l 层的输出特征值。
2)用大小为 k 的卷积核分别对特征值 v( l) ,u( l) 进行

快速一维卷积操作,得到两个分支的跨通道信息交互特

征,经过 σ 函数激活后得到包含通道权重信息的各分支

特征向量,具体可表示为:
P( l)

1 = σ(Conv1dk(v
( l) )) (7)

P( l)
2 = σ(Conv1dk(u

( l) )) (8)
式中:P1、P2 分别表示 GMP 分支和 GAP 分支的特征向

量,σ 为 Sigmoid 激活函数。 Conv1dk 表示卷积核大小为 k
的一维卷积操作,而 k 的大小可采用文献[19]计算,具体

如式(9)所示。

k =
log2(C) + 1

2
(9)

3)构造特征图集的综合权重 S,其中第 l 个特征图的

综合权重 S( l) 表达式如式(10)所示。
S( l) = λ·P( l)

1 + μ·P(2)
2 (10)

式中:λ,μ∈[0,1]为权重系数且满足 λ+μ= 1。 λ,μ 作为

网络模型中的动态参数,可以根据研究侧重点或专家经

验不断调整更新。 结合研究内容和目标,详见分析统计

了 GAP 和 GMP 两个分支的贡献度,基本上处于相等。
因此,本研究构建模型时,设置 λ=μ= 0. 5。

4)将输入特征图集 X 与其综合权重 S 逐通道相乘,

得到通道加权后的特征图集 X
~

。

X
~

= S·X (11)

2　 MIWF-2DCNN 故障诊断方法

2. 1　 MIWF-2DCNN 网络结构

　 　 为有效提取复杂工况下分布式驱动电动汽车用轮毂

电机微弱的故障特征,提出一种 MIWF-2DCNN 模型,基
本结构如图 2 所示,其显著特征在于:利用 2DCNN 的图

像优势提取各传感器信息的二维特征,挖掘表征微弱故

障特征;利用多传感器信息在时域和时频域内特征,构建

轮毂电机轴承故障的多域特征架构;利用改进的注意力

机制对模型中通道特征图进行加权,既实现模型的轻量

化,又突出故障特征。 MIWF-2DCNN 模型主要包括多传

感器信息输入、时域特征提取、时频域特征提取、多域信
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息输出 4 个部分:
1)多传感器信息输入。 在轮毂电机故障诊断领域

中,振动信号蕴含着丰富的状态信息,常被用于监测轮毂

电机的运行状态和故障识别[24-25] ,考虑到垂向振动信号

和水平振动信号具有互补性,综合考虑两个方位的振动

信号有助于提高网络模型输入特征的有效性,因此,选取

轮毂电机水平和垂直两个方向的轴承振动信号作为故障

诊断的输入信号,采用数据二维重构和 STFT 的方式,获
得时域信号和时频域信号的二维灰度图,尽可能消除专

家经验的影响,最大程度保留原始信号的特征,充分挖掘

其时域和时频域内的故障特征。 多传感器信息融合输入

部分流程如下:

图 2　 MIWF-2DCNN 网络结构

Fig. 2　 Network
 

structure
 

of
 

MIWF-2DCNN

　 　 (1)获取时域信号的二维灰度图。 图 3 为一维信号-
二维灰度图转换原理。 若一维时域信号的第 t( t = 1,2,…,
N,…,N2)个数值为 Q( t),转换后灰度图为[R1,

 

R2,
 …,

 

RN],其中第 a 行第 b 列灰度值为 Ra =
 

Ra,b
 ( a,

 

b
 

= 1,
 

2,
 

…,
 

N),则二者的转换表达式如式(12)所示。

Ra,b = round{ Q[(a - 1) × N + b] - min{Q}
max{Q} - min{Q}

×

255} (12)
为了完整表征轮毂电机轴承故障特征,通常情况下,

灰度图行数 N 的大小由轮毂电机旋转 1 圈及以上的运行

状态信息确定。

图 3　 一维信号-二维灰度图转换原理

Fig. 3　 Principle
 

of
 

1D
 

signal
 

to
 

2D
 

grayscale
 

image
 

conversion

(2)获取时频域信号的二维灰度图。 考虑到轮毂电

机多变的运行工况和间歇性强干扰的运行环境,采用

STFT 变换获取轮毂电机振动信号的时频矩阵。 若某振

动信号为 s( t) ,STFT 变换可表示为:

STFT( t,ω) = ∫∞

-∞
s( )h( - t)e - iωtd (13)

式中: STFT( t,ω) 为时间 t 的频谱,h( t)是窗函数。
将 STFT 变换的时频矩阵归一化处理,再乘以 255 转

换为 0 ~ 255 的灰度值,取整后就得时频域信号的二维灰

度图。
(3)将不同方位传感器信号经过(1)、(2)处理后在

通道维度上堆叠作为模型的多传感器信息融合输入。
2)特征提取。 为了实现模型轻量化,CNN 模型参考

经典网络结构 LeNet-5[22] ,改进并构建了 MIWF-2DCNN
网络架构,用于提取故障特征。 整个架构分时域特征提

取和时频域特征提取两个分支,而每个分支的特征提取

过程均由 3 部分组成。 第 1 部分的输入是多传感器信息

在时域或时频域内的二维灰度图构成的特征图集,利用

iECANet 确定各通道有效特征的贡献度,获得通道加权

后的特征图集,再进行卷积、池化;池化后的特征图集作

为第 2 部分的输入,同样进行 iECANet、卷积和池化;第 3
部分先进行 iECANet 处理后,利用 GMP 替换一层全连接

层。 具体流程如图 2 所示。 MIWF-2DCNN 网络架构既突

出了有用信息的通道,优化通道信息权重,又减少了模型

参数,提高模型训练效率。
3)多域信息输出。 通过 2)提取各传感器信息的时

域特征和时频域特征,利用 Concatenate 函数串行拼接起

来,获得多域融合特征向量,最后基于 Softmax 激活函数

输出故障特征。 其优点在于:模型可以从不同域内提取

到更全面的故障特征,有助于提高模型的泛化能力;通过

减少网络参数,降低模型复杂度,以及适当的信息融合,
还可以有效地避免过拟合问题,既保持了模型的性能,又
提高了模型的训练和推理效率。
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2. 2　 轮毂电机轴承故障智能诊断流程

　 　 轮毂电机轴承故障智能诊断流程分为 3 个步骤:
步骤 1)确定轮毂电机运行状态监测信号及智能诊

断模型训练集。 基于轮毂电机机械故障特征的前期研

究,选用其定子轴固定基座的水平和垂直方向上振动信

号,构造包括正常状态和常见机械故障状态的数据集。
步骤 2)训练 MIWF-2DCNN 模型。 设置模型训练学

习率和 epoch 等参数,将预处理后的训练集输入 MIWF-
2DCNN 网络,保存最优的训练模型。

步骤 3)测试智能诊断模型的效果。 将智能诊断模

型嵌入轮毂电机运行状态监测系统,实时将监测数据输

入确定的轮毂电机故障诊断模型,统计多工况下各种状

态的识别精度,评估 MIWF-2DCNN 故障诊断方法。

3　 实验分析与验证

　 　 为了验证所提的 MIWF-2DCNN 故障诊断方法有效

性、以及故障诊断方法对比传统方法的优越性和鲁棒性,
搭建了轮毂电机故障实验台架如图 4 所示,采集轮毂电

机运行状态下的振动信号,作为后续 MIWF-2DCNN 模型

的输入,搭建轮毂电机机械故障诊断模型。

图 4　 轮毂电机实验台架

Fig. 4　 In-wheel
 

motor
 

test
 

bench

3. 1　 实验数据及预处理

　 　 将轮毂电机的轴承故障,如内圈故障( IRF)、外圈故

障(ORF)和滚动体故障( BF),作为典型的轴承故障,由
技术人员在不同轴承的内圈、外圈和滚动体处加工成深

度为 0. 15
 

mm 和宽度 0. 5
 

mm 的损伤后,安装到轮毂电

机上,将正常轮毂电机( Nor) 依次更换成带有不同轴承

故障的轮毂电机进行实验,采集 10
 

N·m 负载转矩的 7
种转速工况(100,200,…,700

 

r / min)下水平和垂直方向

上振动信号。 采样频率为 12. 8
 

kHz,采样时间为 20
 

s。
考虑到 MIWF-2DCNN 模型的学习率和难度,基于轴

承故障特征提取基本要求,将连续 1
 

024 个采集数据视

为一个样本。 每个传感器的一个样本均可在时域内按照

32×32×1 处理得到对应的二维灰度图,在时频域内,设置

STFT 的窗口类型为汉宁窗,窗口长度为 64,帧移为 32,
处理后得到对应的 33 × 33 × 1 时频图(以灰度图形式表

现)。 将水平和垂直方向上两个传感器的同步信号对应

的二维灰度图和时频图,分别叠加起来,可组成 32×32×2
的二维灰度图集和 33×33×2 的时频图集。 基于每类实

验采集数据的总量,可得到 250 个样本,再按照 8 ∶ 2 分

配原则组建轮毂电机故障诊断模型的训练集和测试集。
3. 2　 轮毂电机故障诊断模型构建

　 　 MIWF-2DCNN 故障诊断模型参数如表 1 所示,设置

批量大小(batch
 

size)为 64,迭代次数( epoch)为 100,优
化算法为 Adam 优化器,学习率为 1×10-4。 在操作系统:
Win11,CPU:R7-5800H,GPU:3050Ti,内存:16 G 的运行

环境 下, 算 法 语 言 为 Python3. 7, 深 度 学 习 框 架 为

Tensorflow2. 7. 0,输入训练样本训练 MIWF-2DCNN 故障

诊断模型,得到对应的输出尺寸如表 1 所示,进而构建了

轮毂电机故障诊断模型。
表 1　 MIWF-2DCNN 参数

Table
 

1　 Parameters
 

of
 

MIWF-2DCNN
网络分支 网络层类型 参数 输出尺寸

时

域

特

征

提

取

通道注意力模块 2@ 32×32
卷积层 1 16@ 3×3 16@ 32×32

最大池化层 1 2×2 16@ 16×16
通道注意力模块 16@ 16×16

卷积层 2 32@ 3×3 32@ 16×16
最大池化层 2 2×2 32@ 8×8

通道注意力模块 32@ 8×8
最大池化层 3 GMP 32@ 1×1

时

频

域

特

征

提

取

通道注意力模块 2@ 33×33
卷积层 1 16@ 3×3 16@ 33×33

最大池化层 1 2×2 16@ 17×17
通道注意力模块 16@ 17×17

卷积层 2 32@ 3×3 32@ 17×17
最大池化层 2 2×2 32@ 9×9

通道注意力模块 32@ 9×9
最大池化层 3 GMP 32@ 1×1

多域

特征融合

通道融合层 1 64
全连接层 2 128 128

softmax 输出层 3 4 4

3. 3　 实验验证

　 　 为验证轮毂电机 MIWF-2DCNN 故障诊断模型的有

效性、适应性和优越性,利用留出法、交叉验证法和控制

变量法进行对抗验证,分析 MIWF-2DCNN 模型应用在轮

毂电机故障诊断领域的效果。
1)同一工况下模型对应验证。 本实验共设置了 7 种

不同转速工况,将每种转速视为同一工况,利用留出法将

同一工况下实验数据集划分为训练、测试样本,分别用于

故障诊断模型的训练和测试。 为了避免实验的偶然性,
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同一工况下实验数据按照相同比例选用不同训练样本,
训练 MIWF-2DCNN 模型,其他数据用于测试,重复 10
次,取平均值作为该工况下 MIWF-2DCNN 模型的状态识

别精度,具体如图 5 所示。

图 5　 同一工况下模型对应验证结果

Fig. 5　 Corresponding
 

verification
 

results
 

of
 

the
model

 

under
 

the
 

same
 

working
 

condition

由图 5 可知,同一工况下 MIWF-2DCNN 模型对轮毂

电机状态识别率均超过 96%,尤其是对轴承滚动体故障

的识别率均达到 100%。 在较高转速工况下,轮毂电机机

械故障频率接近于试验台的固有频率,噪声干扰较大,进
而影响 MIWF-2DCNN 模型的识别精度有所波动,但波动

范围在误差许可之内,且满足工程需求。
2)不同工况下模型交叉验证。 利用交叉验证法设计

不同转速工况下 MIWF-2DCNN 模型的验证方案,分析不

同工况下模型迁移能力。 通过选取轮毂电机在较高转速

工况(400,500,600,700
 

r / min)下实验数据,交叉验证故

障诊断模型的状态识别精度。 为了后续描述方便,将

400,500,600,700
 

r / min
 

4 种转速工况分别记为工况 A、
B、C、D,用“AC-B”表示基于工况 A 和 C 的实验数据训练

模型,而利用工况 B 的实验数据测试故障诊断精度。 4
种组合交叉验证结果及平均识别率如图 6 所示。

类似地,利用相同的交叉验证方法,组建训练样本和

测试样本,逐一验证基于 LeNet-5 和一维卷积神经网络

(1DCNN)分别搭建的故障诊断模型,对应的交叉验证结

果及平均识别率如图 6 所示。
由图 6 可知,MIWF-2DCNN 模型在不同工况下交叉

验证的结果很稳定,均保持在 95%以上,明显优于 LeNet-
5 模型;相较于 1DCNN 模型,MIWF-2DCNN 模型的平均

识别率也是高的,仅在 AC-B 组合情况下稍微逊色一点。
因此,MIWF-2DCNN 模型具有很强的迁移学习能力,能
够适应不同工况下轮毂电机轴承故障诊断的工程需求。

3)消融实验验证。 为了进一步验证 MIWF-2DCNN
模型的有效性,采用控制变量法进行消融实验,设计 6 种

方案进行对比。 参照 MIWF-2DCNN 模型,将多传感器信

图 6　 不同工况下模型交叉验证结果及

不同方法效果对比

Fig. 6　 Cross-validation
 

results
 

of
 

models
 

and
comparison

 

of
 

effects
 

of
 

different
 

methods
under

 

variable
 

working
 

conditions

息进行消融,设计了基于单一传感器信息的对比方案,设
计了基于垂直方向和水平方向的传感器振动信号作为模

型输入,分别记为方案 1、方案 2;将 iECANet 模块进行消

融,设计了无 ECANet 和基于传统 ECANet 的对比方案,
分别记为方案 3、方案 4;将特征提取的领域进行消融,设
计了单一领域内特征提取分支的对比方案,具体:方案 5
为采用时域特征提取分支,方案 6 为采用时频域特征提

取分支。 以上 6 种方案涉及的模型参数仍然保持与

MIWF-2DCNN 模型参数一致,在不同工况下进行交叉验

证,各设计方案的状态识别率如图 7 所示。

图 7　 MIWF-2DCNN 模型及其不同

消融实验方案的识别率

Fig. 7　 Recognition
 

rates
 

of
 

the
 

MIWF-2DCNN
 

model
 

and
its

 

different
 

ablation
 

experimental
 

schemes

由图 7 可知,方案 1 和方案 2 的状态识别率均低于

85%,且波动较大,难以适应变工况下轮毂电机故障诊

断;这也说明单一传感器信息难以有效表征其故障特征。
相较之下,方案 3 和方案 4 的状态识别率有所提高,尤其

是方案 4 的状态识别率均超过 90%,且优于方案 3,但低
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于所提方法的方案。 这既表明添加 iECANet 模块是必要

的,又验证了 iECANet 模块的改进方法是有效的。 方案 5
和方案 6 的诊断效果各有其优势,方案 5 的状态识别率

优于方案 1 和方案 2,但波动较大,与方案 3 相比不够稳

定;方案 6 明显优于方案 5,且与方案 4 相差不大。 这说

明变工况下时频域内更易提取轮毂电机的有效故障

特征。
综上所述,基于 MIWF-2DCNN 的轮毂电机故障诊断

模型既具有较强的适应性,又保持 95%以上的状态识别

率,满足复杂环境和多变工况下轮毂电机轴承故障诊断

的工程需求。

4　 结　 论

　 　 为在线监测和有效诊断复杂环境和不同工况下轮毂

电机的轴承故障,利用多传感器及其在时域和时频域内

信息的融合,实现时空信息和多域信息的优势互补,获取

故障方位特征和领域特征,有效的表征轮毂电机的运行

状态;采用 iECANet 对多方位多领域的信息进行评估加

权,提供有用信息的贡献度,降低算法的冗余度;基于

MIWF-2DCNN 的轮毂电机故障识别模型既具有较强的

适应性,又有较高的状态识别率,展现了模型的泛化性和

鲁棒性。
在未来的研究中,将考虑轮毂电机其他机械故障,进

一步验证 MIWF-2DCNN 诊断方法的有效性,探究如何将

所提出的方法应用于轮毂电机驱动电动汽车真实运行

场景。
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