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MIWF-2DCNN diagnosis method for bearing fault of in-wheel motor
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Abstract: A fault diagnosis method based on multi-information weighted fusion and two-dimensional convolutional neural network
(MIWF-2DCNN) is proposed to effectively monitor the operating status of hub motors for distributed electric vehicles under complex
operating conditions and improve the accuracy of bearing fault identification. Firstly, the multi-directional vibration monitoring signals of
in-wheel motor bearing were reconstructed by two-dimensional data reconstruction and time-frequency transformation respectively, and
then converted into grayscale images one by one. According to the direction order, the time-domain grayscale atlas and time-frequency
domain grayscale atlas were stacked as the input of the fault diagnosis model. Secondly, the network structure of efficient channel
attention mechanism (ECANet) was improved, and the improved efficient channel attention mechanism (iECANet) was proposed. The
core idea of IECANET was to add a global maximum pooling (GMP) branch on the basis of global average pooling ( GAP) , and update
the weight coefficient of each branch based on the contribution of effective information. Then, the fault features in time domain and time-
frequency domain were extracted to realize the weighted fusion of multi-information. Thirdly, GMP was used to simplify a fully connected
layer of the traditional two-dimensional convolutional neural network (2DCNN) model to achieve network lightweight. Finally, based on
the experimental data of in-wheel motor under different working conditions, the corresponding verification under the same working
condition, cross validation under different working conditions and ablation experimental verification were carried out. The results show
that the proposed MIWF-2DCNN model can effectively extract the fault features of in-wheel motor bearing, and the fault recognition rate
remains above 95% in complex environments and variable working conditions, which is better than the traditional LeNet-5 and 1DCNN

models.
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Fig. 1 Improved efficient channel attention module
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Fig.3  Principle of 1D signal to 2D grayscale image conversion
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model under the same working condition
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its different ablation experimental schemes
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