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基于 2D-SPWVD 与 PCA-SSA-RF 的超宽带雷达人体
跌落动作辨识方法∗
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摘　 要:针对现有超宽带雷达人体姿态识别研究领域缺少对相似动作辨识的问题,提出一种时频分析结合随机森林( RF)的动

作辨识模型。 提出基于平滑伪维格纳-威利分布(SPWVD)的二维平滑伪维格纳-威利分布(2D-SPWVD)时频分析方法,对预处

理后的人体动作回波信号进行时频特征提取;利用主成分分析法( PCA)对特征矢量进行降维处理,选择累计贡献率较高的前

30 个主成分作为新的特征矢量输入到麻雀搜索算法(SSA)优化的 RF 分类模型中,用于有障碍条件下 5 种不同人体相似跌落

动作辨识。 实验结果表明:预处理算法有效地提升了动作回波信号信噪比,PCA-SSA-RF 分类模型能有效辨识 5 种不同人体跌

落动作,克服了数据的特殊性以及障碍物的干扰,准确率高达 96. 6%。 在实时数据流中的跌倒检测任务中,模型的分类平均准

确率达到了 93%,并与 RF、PSO-RF 等多个不同经典分类模型深入对比,准确率较高且整体所需时间较短,兼具了准确性和分类

效率。 验证了所提方法的优越性与有效性。
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Abstract:
 

Aiming
 

at
 

the
 

deficiency
 

of
 

similar
 

motion
 

recognition
 

in
 

the
 

current
 

UWB
 

radar
 

attitude
 

recognition
 

research
 

domain,
 

a
 

motion
 

recognition
 

model
 

integrating
 

time-frequency
 

analysis
 

and
 

random
 

forest
 

(RF)
 

is
 

proposed.
 

A
 

time-frequency
 

analysis
 

method
 

of
 

two-dimensional
 

smoothed
 

pseudo
 

Wigner-Ville
 

distribution
 

( 2D-SPWVD )
 

based
 

on
 

smoothed
 

pseudo
 

Wigner-Ville
 

distribution
 

(SPWVD)
 

is
 

proposed
 

to
 

extract
 

the
 

time-frequency
 

features
 

of
 

the
 

preprocessed
 

human
 

motion
 

echo
 

signals.
 

Principal
 

component
 

analysis
 

( PCA)
 

was
 

employed
 

to
 

reduce
 

the
 

dimension
 

of
 

the
 

feature
 

vectors,
 

and
 

the
 

top
 

30
 

principal
 

components
 

with
 

a
 

high
 

cumulative
 

contribution
 

rate
 

were
 

selected
 

as
 

new
 

feature
 

vectors
 

to
 

be
 

input
 

into
 

the
 

RF
 

classification
 

model
 

optimized
 

by
 

sparrow
 

search
 

algorithm
 

(SSA)
 

for
 

the
 

identification
 

of
 

five
 

distinct
 

human
 

similar
 

drop
 

actions
 

in
 

the
 

presence
 

of
 

obstacles.
 

The
 

experimental
 

outcomes
 

demonstrate
 

that
 

the
 

pretreatment
 

algorithm
 

can
 

effectively
 

enhance
 

the
 

SNR
 

of
 

the
 

action
 

echo
 

signal,
 

and
 

the
 

PCA-SSA-RF
 

classification
 

model
 

can
 

effectively
 

distinguish
 

five
 

different
 

human
 

fall
 

movements,
 

overcome
 

the
 

particularity
 

of
 

data
 

and
 

the
 

interference
 

of
 

obstacles,
 

with
 

an
 

accuracy
 

rate
 

as
 

high
 

as
 

96. 6%.
 

In
 

the
 

fall
 

detection
 

task
 

within
 

the
 

real-time
 

data
 

stream,
 

the
 

average
 

classification
 

accuracy
 

of
 

the
 

model
 

reaches
 

93%,
 

and
 

it
 

is
 

profoundly
 

compared
 

with
 

RF,
 

PSO-RF
 

and
 

other
 

diverse
 

classical
 

classification
 

models,
 

featuring
 

high
 

accuracy
 

and
 

short
 

overall
 

time,
 

and
 

possessing
 

both
 

accuracy
 

and
 

classification
 

efficiency.
 

The
 

superiority
 

and
 

effectiveness
 

of
 

the
 

proposed
 

method
 

are
 

verified.
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0　 引　 言

　 　 人体动作辨识和行为感知是智能化人机交互的基

础,在智能家居、安全监测、抢险救灾、医疗养老等诸多领

域具有广泛的应用价值[1] 。 多领域的不同需求以及应用

场合的复杂性都使得行为感知应具有更高的准确性、鲁
棒性和实时性。 随着计算机视觉技术[2-3] 的飞速发展使

得基于光学摄像的行为识别研究得以充分实现,但这样

的手段受可见光影响较大,在视频画面内成像物体干扰

较多且涉及隐私问题。 基于测量单元的智能手环、手表

等嵌入式传感监测方案为人们的基础健康状况保驾护

航[4-5] ,但接触式设备[6] 能获取的信息有限且随身佩戴依

赖于目标的主观性。 鉴于以上两种常见手段的不足与局

限性,借助雷达探测应对于复杂任务环境进行姿态识别

应运而生[7] 。 超宽带雷达( ultra-wideband
 

radar,
 

UWB)
具有穿透能力强、抗干扰能力强、探测能力强等优点,可
以不受特殊天气影响以及环境限制,因此围绕超宽带雷

达人体姿态辨识问题开展研究。
随着近年来超宽带雷达人体姿态识别与行为辨识研

究日益发展,与机器学习等统计分析方法与经典信号处

理技术不断加速融合,有效地推动了雷达系统的智能化

和生物特征识别的多模态发展。 李新春等[8] 用二维离散

小波变换结合奇异值分解获取特征图像在不同方向与尺

度划分下动作的局部特征表征,根据全局与局部融合特

征,在网格搜索算法优化的支持向量机模型 ( support
 

vector
 

machine,SVM)中实现人体动作的识别分类,平均

识别准确率为 95. 63%;宋永坤等[9] 使用卷积神经网络

(convolutional
 

neural
 

network,CNN)提取人体目标成像的

信号强度和空间位置特征,利用反卷积模块重构出人体

目标的各个关节点位置;蒋留兵[10] 等为了在人体微多普

勒特征不明显条件下识别静态人体目标及人体姿态,提
出结合双谱对角线起伏特性与目标强散射点分布特征的

识别方法;张丽丽等[11] 提出了一种结合 CNN 和 Swin
 

Transformer 的网络模型,有效识别 9 类动作,识别准确率

达到 98. 2%;Lai 等[12] 应用视觉转换器深度学习模型和

多种雷达配置来提高睡眠姿势分类精度,应用多个雷达

系统以不同的姿势反映不同的身体横截面积达到识别目

标;Ibrahim
 

Alnujaim 等[13] 针对雷达数据不易获取的难

题,利用生成对抗网络对时频谱图数据进行增广;Huang
等[14] 分别采用最小二乘估计方法和改进的扩展卡尔曼

滤波算法来抑制距离测量的噪声,提高定位和识别的精

度;英国伦敦大学学院的 Vishwakarma 等[15]
 

利用电磁波

传播模型对数据库中的四类人体行为的距离多普勒、时
频谱图和距离像进行了仿真,使用 ResNet18 分类准确率

达到了 95. 79%
 

;
 

An[16] 提取每个时频单元在特定运动方

向上最显著的微多普勒特征,使用不同 CNN 结构的比较

分类;Chen 等[17] 提出了一种基于脉冲无线电超宽带雷达

的人体坠落检测方法,通过检查高多普勒频率能量来实

现这一点,利用 SVM 检测器进行状态划分。
在现有研究中,虽实现了高准确率的识别,但大多基

于常见多类动作进行识别,或将原地动作或非原地动作

进行一级分类,并未细化、有针对性的对相似动作进行辨

识,且都处于无障碍的环境中,并未在识别中设置障碍物

以增加算法对多场景下的适用性,很难脱离理想实验环

境在生产生活中使用。
针对上述问题,设计 5 种在竖直方向位移变化显著

且包含下降趋势的常见动作,定义其为相似的人体跌落

动作,以人体跌落动作为研究对象,基于高斯脉冲式超宽

带雷达设备,提出二维平滑伪维格纳-威利分布 ( two-
dimensional

 

smoothed
 

pseudo
 

Wigner-Ville
 

distribution,2D-
SPWVD)时频分析方法结合麻雀搜索算法 ( sparrow

 

search
 

algorithm,
 

SSA) 改进的随机森林( random
 

forest,
RF)模型,在有障碍的条件下进行跌落动作的辨识,弥补

现有研究的不足,研究成果可应用于老年人、病人等特殊

群体的摔倒预警及安全监测等。

1　 超宽带雷达及人体动作回波理论

1. 1　 超宽带雷达系统及数学模型

　 　 以挪威 Novelda 公司研发的穿透力强、分辨率高的

NVA6100 纳米级脉冲雷达芯片为核心,配套收发天线搭

建超宽带雷达系统采集人体动作数据。 NVA6100 雷达

芯片采用高斯脉冲信号进行调制,该种信号在时频域中

分辨能力良好,并可实现脉冲信号中心频率和带宽的调

节,有利于在时频域进行回波分析。 设定脉冲重复频率

为 48
 

MHz,
 

最大帧深度为 512 帧并联采样。 超宽带雷达

探测系统组成结构如图 1 所示,其中脉冲发生器产生的

高斯脉冲信号经功率放大器功率放大后,通过发射天线

沿固定方向发出,信号遇到人体及周围物体发生反射、折
射后经接收天线接收以及低噪声放大,传输至高速采样

器完成信号的采集。
雷达发射单个高斯脉冲信号的表达式可写为:

P( t) =
S( t) = 1

2πσ
exp - t2

2σ2( )é

ë
êê

ù

û
úú ,0 ≤ t < Tp

0,t > Tp

ì

î

í

ïï

ïï
(1)

式中: σ2 伽马方是用于控制脉冲信号的宽度的脉宽因

子,Tp 为脉冲的间隔时间。
则 UWB 雷达连续发射的高斯脉冲信号可表示为:

P tr = ∑
N

N = 1
P( t - (N - 1)Tp) (2)

式中:N 表示雷达发射脉冲总个数。
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图 1　 UWB 雷达系统

Fig. 1　 UWB
 

radar
 

system

1. 2　 人体动作回波理论及数学模型

　 　 超宽带雷达设备发射的每一个高斯脉冲信号在传播

过程中遇到人体后被反射回来,系统的接收天线将接收

到的反射回波经过系统处理后,可输出一帧回波信号,随
着人体动作的改变,多帧回波信号的波形也会随之改变,
变化中则包含着人体动作的信息,具体过程如图 2 所示。

图 2　 雷达发射脉冲及回波信号采集示意图

Fig. 2　 Schematic
 

diagram
 

of
 

radar
 

pulse
and

 

echo
 

signal
 

acquisition

基于人体的多散射点模型,超宽带雷达与测试目标

的瞬时距离可表示为:
R( t) = Ro + ΔR( t) (3)
Ro 表示雷达与被测目标的距离, ΔR( t) 为人体在运

动过程中所产生的位移。
在采集环境中除人体外其他物体都是静止状态的前

提下,雷达与测试者之间信道冲激响应的表达式为:

h( ,t) = ∑
n

i
a iδ( - i) + avδ( - v( t)) (4)

式中: a iδ( - i) 对应为环境中静止物体产生的冲激响

应, avδ( - v( t) ) 为人体产生的冲激响应; a i 和 av 分别为

静止物体的回波幅度和人体的回波幅度; 和 t 分别为信

号的快时间与慢时间。
忽略环境噪声干扰,雷达回波信号可表示为式(2)

中脉冲信号 p( )与冲激响应 h( ,t)的卷积:

s( ,t) = p( )∗h( ,t) = ∑
n

i
a ip( - i) + avp( -

v( t)) (5)

式中: v( t) = 2R( t)
c

为人体的回波时延,c 为光速。

为了更便捷的表示和处理回波数据,将雷达回波信

号 s( ,t)表示为 M × N 阶的回波矩阵为:
S[m,n] = s(mT f,nTs) (6)

式中: m = [1,2,…,M] 为雷达的快时采样序列,也称为

距离门; n = [1,2,…,N] 雷达慢时采样的时间序列;T f

和 Ts 分别为雷达快时和慢时采样的时间间隔;矩阵中的

值则表示回波信号的强度。

2　 基于 2D-SPWVD-PCA-SSA-RF 的人体动作
辨识算法

2. 1　 信号预处理

　 　 在实际的探测过程中,除了探测目标以外,周围还有

许多其他静止于房间内的陈设以及墙体等物体,且由于

雷达天线的直接耦合会使正在探测的雷达波在反射、折
射等阶段产生大量的干扰杂波[18] 。 在杂波和噪声的干

扰下,对后续的特征提取会产生很大影响,该杂波主要表

现为直流分量、低频分量等,因此需要在提取动作特征矢

量前对雷达回波进行去噪预处理,以提升信噪比、凸显出

人体运动的特征。
直接减平均法( time

 

mean
 

subtraction,TMS) 是将雷

达回波数据沿扫描时间方向取平均值,用原始数据减去

这一平均值得到新的回波矩阵,来达到去除上述干扰的

效果,则消除后的结果为:

Ω(m,n) = S(m,n) - 1
M × N∑

M

m = 1
∑

N

n = 1
S[m,n] (7)

式中: 1
M × N∑

M

m = 1
∑

N

n = 1
S[m,n] 可近似看为背景杂波中的直

流分量。
2. 2　 基于 2D-SPWVD 的时频特征分析

　 　 针对于相似动作的准确辨识这一目标,考虑到这些

动作都具有跌落趋向,采用时频分析可以精确描述人体

动作回波信号在时域和频域上的联合分布情况,有利于

提取相似动作的频率特征,相对于时域或频域单一层面

的对单独变量的分析,其能够更准确的描述和保留原始

信号在时间和频率上包含的有效目标信息,将时域信号

转化为三维时频分布图,以便于可以聚焦回波信号的时

频变化情况以及提取时频特征,因此,时频分析对于非线

性非平稳信号的特征捕捉更加全面精确,更适用于分析

雷达回波的动态物理特征。
平滑 伪 维 格 纳-威 利 分 布[19-20] ( smoothed

 

pseudo
 

Wigner-Ville
 

distribution,
 

SPWVD)基于维格纳-威利分布

(Wigner-Ville
 

distribution,WVD) 进化而来,其利用自相

关函数来计算功率谱,WVD 方法同时具有较高的时间分
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辨率和频率分辨率,时频聚集性较强,具有良好的边缘特

性以及时移、频移不变性等优越的数学性能,针对于信号

x( t) ,WVD 分布的计算模型[21] 为:

WVD( t,f) = ∫+∞

-∞
x t +

2( ) x∗ t -
2( ) e -j2πf d (8)

式中: x∗( t) 为信号 x( t) 的共轭;t 和 f 分别为时间和频

率; 为 WVD 分布的信号时间差。
但因 WVD 分布的非线性本质,导致时频谱中出现

严重的交叉项干扰, 从而强时频聚集性无法展现。
SPWVD 在 WVD 的基础上进行了加窗和平滑处理,从而

抑制了 WVD 方法在时间轴方向和频率轴方向含有交叉

项的影响。 采用 Hamming 窗提高分辨率,使得相邻的两

个信号峰相互独立,使得交叉项减少,频率窗 h( ) 抑制

了时间方向上的交叉项,而时间窗 g(u) 则抑制了频率方

向上的交叉项。 因而通过在时间和频率上同时加窗,可
使其同时具备高时间分辨率和高频率分辨率,则 SPWVD
时频分析的强时频聚集性得以保留,且在时间平滑和频

率平滑尺度方面,可实现独立选择和调节,以达到最优的

时频分析效果。
加入频率平滑窗 h( ) 和时间平滑窗 g(u) 后,

SPWVD 分布的计算模型[22-23] 如下:
SPWVD( t,f) =

∫+∞

-∞
∫+∞

-∞
h( t)g(u)x t - u + t

2( ) e - j2pftdudt (9)

式中:u 为 SPWVD 的频率差。
经分析可看出上述 SPWVD 时频分析手段具有一定

的优越性,但传统 SPWVD 是对一维时域信号进行时频

分析的。 而人体动作回波矩阵 S[m,n] 由快时间、慢时

间两个维度构成,传统 SPWVD 只能针对于快时间维的

一个刻度进行时频分析,不能将全部动作信息输入进分

类器当中。 针对相似跌落动作的辨识在径向距离变化难

以区分的情况,故在沿用 SPWVD 的时频优越性的基础

上提出 2D-SPWVD,忽略微弱径向距离变化,聚焦时频分

布特征矢量,具体过程示意如图 3 所示,提取回波矩阵

S[m,n]的每一条快时间序列逐个进行 SPWVD 计算,得
到每一列快时间采样点的时间-频率-幅值三维图像,将
这些图像延 z 轴即幅值方向逐个叠加,得到每个 S 矩阵

独有的新的三维图像,其包含了 S 矩阵中的所有信息,
2D-SPWVD 分布的计算模型如下:

2D - SPWVD( t,f) = ∑
N

n = 1
SPWVDn( t,f) (10)

2. 3　 PCA-SSA-RF 动作辨识模型算法

　 　 在分类器的选择上,考虑到现在分类算法的不足,例
如 k 近邻算法( k-nearest

 

neighbors,KNN) [24] 仅适用于样

本容量较大的自动分类,在样本容量较小时易产生误分;
人工神经网络需要大量的参数且学习时间过长;SVM[25]

图 3　 2D-SPWVD 过程示意图

Fig. 3　 Schematic
 

diagram
 

of
 

2D-SPWVD
 

process

虽可以解决小样本情况下的机器学习,但缺少数据敏感

性,对于非线性问题没有通用的解决方案。 RF 是具有高

分类精度的集成学习分类器
 [26-27] 。 其分类过程如图 4 所

示,用 Bootstrap 重采样方法大量重复有放回的随机抽样

模拟总体分布,生成多个自助样本,在节点特征中抽取部

分生成 CART 决策树组成随机森林。 用所有决策树对样

本分类并进行投票,票数最多的类别则为最终分类结果。

图 4　 随机森林分类器流程图

Fig. 4　 Flowchart
 

of
 

random
 

forest
 

classifier

为进一步优化,在仿生优化算法的选择方面,考虑到

粒子群优化( particle
 

swarm
 

optimization,
 

PSO)在复杂的

搜索空间中容易陷入局部最优解,且对惯性权重和加速

常数等较为敏感。 而 SSA 引入随机性来避免陷入局部解

以获取全局最优解,通过更高效的机制和自适应策略,有
效降低计算负担,收敛速度较为可观,在大规模问题中的

处理效率高。 故选用 SSA 优化 RF 分类器。
SSA 是参考麻雀种群捕食和反哺的过程提出。 种群



　 第 10 期 基于 2D-SPWVD 与 PCA-SSA-RF 的超宽带雷达人体跌落动作辨识方法 ·151　　 ·

依据自身能量水平不断调整位置,当其中一只麻雀能量

很高设为发现者( S1),其他人被称为掠夺者( S2),旁观

者(S4)为了保护自身的安全,也会做出相应的反馈行

为,同时,S3 处于危险的群体外围,可能放弃该位置。 假

设在 N 维搜索空间中定义了一个由 D 个麻雀个体组成

的种群,初始状态是随机形成的[28] :

X =
X1

︙
XN

é

ë

ê
ê
êê

ù

û

ú
ú
úú

=

x1,1 … x1,M

︙ ⋱ ︙
xN,1 … xN,M

é

ë

ê
ê
êê

ù

û

ú
ú
úú

(11)

其中,N 是麻雀的数量,M 代表维度。 则适应度值表

示为:

FX =
f1

︙
fN

é

ë

ê
ê
êê

ù

û

ú
ú
úú

=
f x1,1 … x1,M[ ]

︙ ⋱ ︙
f xN,1 … xN,M[ ]

é

ë

ê
ê
êê

ù

û

ú
ú
úú

(12)

在 SSA 模型当中,S1 麻雀善于找寻定位食物,所以

它们应该在大范围内搜索食物,其位置更新如下:

X t +1
nm =

X t
nm·exp

- n
α·P( ) ,R2 < ST

X t
nm + K·L,R2 ≥ ST

{ (13)

其中,t、P 分别代表当前和最大迭代次数;
 

Xnm 表示

位置信息;
 

R2
 ∈

 

[0,1]和 ST
 

∈
 

[0. 5,1]分别代表警告

值和安全值;
 

L 代表 1×m 的矩阵;
 

K 和 α 为范围不同的

随机数。
S2 的位置更新表达式为:

X t +1
nm =

Q·exp
X t

worst - X t
n,m

n2( ) ,n > N
2

X t +1
best +| X t

n,m - X t +1
best |·A +·L,n ≤ N

2

ì

î

í

ï
ï

ï
ï

(14)

其中,X t
 

worst 是最差位置,X t
n,m 是最佳位置;

 

A+
 

=
rand{ -1,1}

 

·
 

AT(AAT) -1。
将 S4 设为 20%,在群体中随机分布,则 S4 的位置更

新公式为:

X t +1
n,d =

X t
best + β(X t

n,d - X t
best),fn ≠ fg

X t
n,d + μ·

X t
n,d - X t

worst

| fn - fw | + e( ) ,fn = fg

ì

î

í

ï
ï

ïï

(15)

其中,β 是符合标准正态分布的整数;
 

μ
 

∈
 

[
 

-
 

1,
1];

 

e 是常数;
 

X t
 

best 是模型中的最佳位置;
 

fn、fg 和 fw 分

别是当前、最佳和最差适应值。
因原始数据维度较高,决策树在决策前对节点特征

进行随机抽取时,难免会抽取到对结果影响较小的特征,
从而影响分类精度。 因此引入主成分分析法( principal

 

component
 

analysis,
 

PCA) 算法提取有代表性的特征矢

量,在遵循方差最大原则下,将特征投影到新的坐标上,
用较少特征包含原有数据大部分信息。

过程为将 2D-SPWVD 处理后的 k 个 n 维样本构成样

本集 X= { x(1) ,x(2) ,…,x(k) },对每个动作样本进行标准

化处理。

x( i) = x( i) - 1
k ∑

k

j = 1
x( j) (16)

构建样本的相关系数矩阵 C,如式(17)所示。
C = xxT (17)
分解得到矩阵 C 的特征值 λ1,λ2,…,λn 及特征向量

μ1,μ2,…。 μn,μ 特征值 λ 相对应的特征向量。 选取前 p
个值对应的特征向量 μ1,μ2,…μp ,将上述特征向量标准

化后,组成特征向量矩阵 U。 计算方差贡献率 η i 及累计

方差贡献率 η􀰑(p) ,计算公式如下:

η􀰑(p) = ∑
p

i
η i

η i = λ i / ∑
k

i
λ i

ì

î

í

ï
ï

ï
ï

(18)

将原有样本集中的所有 x( i) ,通过式(19)变换成更

低维的样本集。
z( i) z( i) = UTx( i) (19)

2. 4　 PCA-SSA-RF 模型建立

　 　 建立 PCA-SSA-RF 模型的具体步骤如下:
1)设 2D-SPWVD 处理后的数据集 X 由 k 个样本组

成,每个样本有 n 维特征,数据集的 2 / 3 作为训练集,剩
余的 1 / 3 作为测试集,训练集用于模型的进化学习,测试

集用于模型性能评估;
2)使用 PCA 提取贡献率较高的部分特征矢量构成

有 p 维特征矢量的新样本集;
3)用 Bootstrap 重采样的方法生成训练子集。
4)从 p 个节点特征中随机抽取 i 个,生成 CART 决

策树,不做剪枝处理。
5)循环 3)、4)步骤,生成需求数量的决策树组成随

机森林。
6) 使用 SSA 搜索 RF 模型中待优化的超参数,即

Mtry 和 Ntree[29-30] 。 然后,建立 PCA-SSA-RF 混合模型。
整体分类过程设计如图 5 所示,包含了数据处理及

分类器设计与优化的具体流程。

3　 实验和结果分析

3. 1　 实验设计

　 　 为验证上述时频分析以及分类学习方法的有效性,
针对于现有研究中缺少针对于相似动作的细节辨识,且
考虑到应用于特殊群体的安全监测,设计表 1 中 5 种包

含下落趋势,竖直方向位移变化显著的相似动作进行辨

识。 为测试模型针对不同被测对象时的泛化性,选取表

2 中的 6 名具有不同身高体重且不同性别的被测人员共
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图 5　 基于 2D-SPWVD-PCA-SSA-RF 的超宽带

雷达人体跌落动作辨识流程图

Fig. 5　 Flow
 

chart
 

for
 

identifying
 

human
 

fall
 

movements
 

using
ultra

 

wideband
 

radar
 

based
 

on
 

2D-SPWVD-PCA-SSA-RF

同参与测试,实验步骤如下。
表 1　 动作设计类别

Table
 

1　 Action
 

Design
 

Categories

动作编号 动作类别

1 蹲下站起

2 侧向摔倒

3 向后摔倒

4 坐下站起

5 向前摔倒

表 2　 被测人员信息

Table
 

2　 Information
 

of
 

Tested
 

Personnel

目标编号 性别 年龄 身高 体重

1 女 22 155 50
2 女 23 162 55
3 女 55 160 65
4 男 23 180 70
5 男 27 179 90
6 男 60 175 75

　 　 1)开启设备,调试好相关参数;
2)为贴近实际使用场景,在雷达与被测人员中间设

置 25 cm 厚的混凝土墙体为障碍物,将设备紧贴于障碍

物,将设备正对被测人员,考虑应用场景空间大小及后期

维护便捷,要求被测人员在距离设备 5 m 处进行测试测

试场景设置如图 6 所示。
3)被测人员依次进行测试,按动作编号匀速重复每

组动作 15 次,每一次动作在 3
 

s 内完成,同一动作尽力保

证每次以相同幅度完成,视为一个有效样本;
4)每 15 次动作记录在一个 7

 

680×512 的数据样本

文件内,6 人共进行 30 次测量,共计 450 组测试数据。

图 6　 实验测试场景实拍图

Fig. 6　 Real
 

shot
 

of
 

experimental
 

testing
 

scenario

3. 2　 结果验证与分析

1)预处理实验结果

使用 TMS,对上述数据进行预处理,处理前后如图 7
所示,图 7(a)、(b)、(c)、(d)、(e)分别为蹲下站在、侧向

摔倒、向后摔倒、坐下站起、向前摔倒的预处理前后图像,
由图可见,所用预处理算法有效的对回波中的直流分量、
低频分量以及其他噪声进行滤除,凸显人体动作的轨迹,
增强了信噪比。
2)2D-SPWVD 时频特征提取

将每组动作数据文件分割为 15 个 512×512 的样本,
计算每个样本每一数据帧的 SPWVD,再沿着采样帧将能

量幅值逐个叠加,聚焦一个样本周期内动作的整体时频

特性,降低距离维对于识别的干扰。
5 种动作经过滤波后的回波数据时频处理叠加后的

时间-频率-幅值三维图像如图 8 所示,由图 8 可知,所提
 

2D-SPWVD 时频分析方法很好去除掉了交叉项的干扰,
清晰准确的展现了动作样本数据在时频域上的能量分

布,其中图 8
 

(a)、(d)两个较为平缓的动作在 0
 

Hz 频率

处出现峰值,分别达到 58. 645 和 32. 332;而图 8 ( b)、
(c)、(e)3 个较为激烈的摔倒动作低频率幅值较低,符合

动作本身特点。 5 种动作样本频率分布在 0 ~ 10
 

Hz 区间

内,幅值变化明显,克服了墙体障碍物的影响,证实了有

障碍条件下所提方法的可行性。 五种相似的跌落动作经

上述方法处理后,在图像的能量幅值变化以及频率分布

上都展现出易于区分的优越性,故可以通过此种时频手

段进行动作特征向量的提取。
3)PCA-SSA-RF 分类器验证

根据 3. 2. 1 中的时频特征图像,提取 512 维的时频

数据样本,采用标准化后的数据求解相关系数矩阵 R,分
解 R 得到特征值和特征向量,通过计算得到贡献率较大

的主成分。 如图 9 所示,前 30 个主成分的累计贡献率已

经达到 0. 946 5,选取前 30 个主成分作为新特征,包含了

原始样本内的绝大多数信息,在保证信息完整性的同时
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图 7　 数据预处理前后对比图

Fig. 7　 Comparison
 

before
 

and
 

after
 

data
 

preprocessing

也顾及到了收敛速度。 若不使用 PCA 进行主成分选取,
则数据量庞大,对处理器要求极高,难以实现。

将原始数据以滑窗的方法分割成的 450 个样本,按
照上述流程进行主成分分析,得到每个样本的 30 维的新

特征向量矩阵,此矩阵作为识别模型的输入参数,使用

SSA 搜索 RF 模型中的最优 Mtry 和 Ntree 值。 从训练集

上的五折交叉验证方法获得的平均 RMSE 被用作搜索最

佳超参数的适应度函数。
将最大迭代次数设置为 100 次,麻雀种群的大小分

别设置为 10、20、50 和 100。 适应度函数图如图 10 所示,
最大适应度出现在种群为 10 时。 此外,当种群规模为

100 时,SSA-RF 模型达到最小适应值 0. 041 9,故 SSA-RF
模型可以用 100 只麻雀种群来建立。 在模型训练之前,
经过反复试验优化,将 SSA 的迭代次数和初始种群规模

分别设置为 100 和 100。 Mtry 和 Ntree 的搜索范围分别

设置为[1,4]和[10,500]。
将 450 个样本按 2 ∶ 1 划分训练集和测试集,基于训

练集,使用 SSA 优化 RF 的超参数。 最后,得到最佳 Mtry
和 Ntree 值分别为 2 和 366。 测试集由 300 个样本构成,
训练集由 150 个样本构成,训练结果如图 11 所示,由图

可见,对 5 种动作的分类准确率分别为 97. 2%、96. 7%、
95. 2%、97. 4%、96. 3%,平均分类准确率达到 96. 56%,可
见本文所提分类器可实现五种相似动作的辨识,准确率

较高,进一步验证了 2D-SPWVD 时频特征提取的有

效性。
所提 SSA-RF 分类模型评价指标如表 3 所示,由计算

结果可以看出准确率、召回率以及二者的平衡 F 分数

(balanced
 

F
 

score,F1-score) 较高,尤其对于 1、4 两个非

摔倒性的动作,这将有效地辨识目标是否真正出现摔倒

行为。 该模型对于特定标签的预测准确程度及识别能力

都较为优越,模型整体性能也十分可观。
表 3　 模型评价指标

Table
 

3　 Model
 

evaluation
 

index %

动作 1 动作 2 动作 3 动作 4 动作 5
准确率 97. 2 96. 7 95. 2 97. 4 96. 3
召回率 98. 0 95. 5 96. 8 98. 4 94. 3

F1-Score 97. 6 96. 1 96. 0 97. 9 95. 3

3. 3　 模型对比

　 　 基于 PCA 提取出的 30 个贡献率较高的特征矢量,
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图 8　 动作样本 2D-SPWVD 时频分布图

Fig. 8　 Time
 

frequency
 

distribution
 

map
 

of
 

action
 

sample
 

2D-SPWVD

图 9　 特征累计贡献率统计图

Fig. 9　 Statistics
 

of
 

cumulative
 

contribution
 

rate
 

of
 

features

将所提模型与其他经典模型对比。 结果如表 4 所示,其
中 ExtraTree、极端梯度提升树( extreme

 

gradient
 

boosting,
 

XGboost)准确率超过 85%,但低于 RF 分类模型,验证了

随机森林算法在分类领域的优势。

表 4　 模型分类准确率
Table

 

4　 Classification
 

accuracy
 

of
 

models %
算法名称 动作 1 动作 2 动作 3 动作 4 动作 5 平均准确率

SVM 72. 6 68. 9 75. 4 67. 3 66. 5 70. 1
KNN 83. 9 81. 2 84. 5 80. 6 82. 3 82. 5

ExtraTree 89. 2 90. 7 88. 5 86. 5 87. 6 88. 5
XGBoost 92. 9 90. 8 91. 6 88. 4 89. 6 90. 6

RF 91. 5 89. 2 93. 7 90. 6 90. 7 91. 1

图 10　 不同 SSA-RF 模型的适应度曲线图

Fig. 10　 The
 

fitness
 

curve
 

of
 

different
 

SSA-RF
 

models.

　 　 在比较 SVM、KNN、ExtraTree、XGBoost 和 RF 的超参

数时,可以看到它们的复杂性和灵活性各不相同。 SVM
主要依赖正则化参数 C、核函数类型和 gamma 等,超参数

个数较少。 KNN 的超参数相对简单,主要包括 K 值和距

离度量方法,总体超参数个数也较少。 ExtraTree 和 RF
共享了一些相似的超参数,例如决策树数量 nestimators、
每棵树的最大特征数 max_features 等,但由于 ExtraTree
在树的随机性上有更高的控制,因此超参数个数略多。
XGBoost 具有更复杂的超参数设置,包括学习率、最大深

度和子样本比例等,超参数个数最多,适用于需要精细调

优的场景。 总体而言,超参数的个数从少到多依次为
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图 11　 SSA-RF 分类结果图

Fig. 11　 SSA-RF
 

classification
 

results
 

graph

SVM、KNN、RF 和 ExtraTree,最后是 XGBoost,这表明不同

模型的灵活性与复杂性存在显著差异。 在训练时间排

序、同样的训练集尺寸驱动下,KNN、RF、ExtraTree、SVM
和 XGBoost 的训练时间分别为:5. 32 s,12. 56 s,25. 32 s,
30. 15 s,42. 13 s。 在达到最小误差从而跳出循环的排序:
RF、XGBoost、ExtraTree 和 SVM 分别为:93、152、163、278。

RF 模型的训练过程虽然相对复杂,涉及多个超参数

和决策树的构建,但由于其可以并行处理每棵树,所需的

训练时间通常较少。 这种并行化特性使得 RF 在大规模

数据集上表现出高效性,尽管模型本身的构建涉及复杂

的随机特征选择和投票机制。 因此,尽管 RF 模型的训

练过程复杂,整体所需时间却相对较短,兼具了准确性和

分类效率。
采用 RF、PSO-RF 算法分别对上述时频分析及主成

分提取后的数据集进行分类,结果如表 5 所示,SSA-RF
较 RF 分类准确率提高 5. 5%,较 PSO-RF 分类准确率提

高了 4. 9%。 在使用本文训练集训练混合优化机器学习

模型时,设置同样的迭代次数情况下,SSA-RF 模型的迭

代时间为 86. 32 s,PSO-RF 模型的迭代时间为 120. 38 s,
SSA-RF 所需时间更少。 基于上述比较,SSA-RF 模型在

跌倒检测任务中相较于其他混合优化机器学习模型表现

更为优越。
表 5　 优化模型分类准确率

Table
 

5　 Optimize
 

the
 

classification
 

accuracy
 

of
 

the
 

model
%

算法名称 动作 1 动作 2 动作 3 动作 4 动作 5 平均准确率

RF 91. 5 89. 2 93. 7 90. 6 90. 7 91. 1
PSO-RF 92. 1 90. 4 91. 2 93. 6 91. 4 91. 7
SSA-RF 97. 2 96. 7 95. 2 97. 4 96. 3 96. 6

　 　 为验证 SSA-RF 的实时性能和鲁棒性,使用室内监

控摄像头实时记录跌倒动作,并将实验数据重新输入已

训练好的模型中,测试其延迟时间、准确性和鲁棒性。 在

处理 实 时 数 据 流 时, SSA-RF 模 型 的 平 均 延 迟 为

56. 30
 

ms,满足实时监测的需求。 在实时数据流中的跌

倒检测任务中,SSA-RF 模型的分类平均准确率达到了

93%。 此外,为了模拟真实的跌倒环境,在实时数据流中

加入随机噪声干扰进行测试,结果显示其准确率在 90%
~ 93%之间波动。 虽然在噪声干扰的实时数据流中,
SSA-RF 模型的跌倒动作分类准确性有所下降,但仍然保

持较高的准确性。 这些结果表明,SSA-RF 模型展现出较

强的鲁棒性,适用于真实环境中的跌倒动作检测。
综上,

 

所有模型分类准确率对比如图 12 所示,可见

所提方法分类准确率在单个动作及平均辨识准确率上均

明显优于其他模型。

图 12　 不同算法分类结果对比图

Fig. 12　 Comparison
 

of
 

classification
results

 

of
 

different
 

algorithms

4　 结　 论

　 　 为弥补现有超宽带雷达人体姿态识别研究领域缺少

对相似动作辨识的问题,基于人体动作回波信号,提出

2D-SPWVD 时频分析方法结合 PCA-SSA-RF 模型进行动

作辨识,在有障碍的条件下进行实验验证并与其他模型

进行深度对比。 结果表明,所提 2D-SPWVD 方法展现了

动作样本的整体时频联合分布情况,减少了交叉项干扰,
时频聚焦性强,有效的对人体姿态特征矢量进行提取,降
低了识别难度。 PCA-SSA-RF 分类器实现了有障碍条件

下的 5 种相似跌落动作的辨识,对蹲下站起、侧向摔倒、
向后摔倒、坐下站起、向前摔倒 5 个动作分类的准确率分

别为 97. 2%、96. 7%、95. 2%、97. 4%、96. 3%,辨识平均准

确率达到 96. 6%。 在实时数据流运行过程中也有良好的

表现,满足实时监测的需求,在辨识速度及准确率方面均

优于其余对比模型。 所提方法有效提高了高维度、少样

本数据下人体动作辨识的精度,可适用于更多针对特殊
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人群的安全监测场景,且泛化性强、鲁棒性高,为未来雷

达探测识别领域提供新的技术参考。
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