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Human drop action recognition method based on 2D-SPWVD
and PCA-SSA-RF for ultra-wideband Radar
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(School of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China)

Abstract: Aiming at the deficiency of similar motion recognition in the current UWB radar attitude recognition research domain, a
motion recognition model integrating time-frequency analysis and random forest (RF) is proposed. A time-frequency analysis method of
two-dimensional smoothed pseudo Wigner-Ville distribution ( 2D-SPWVD ) based on smoothed pseudo Wigner-Ville distribution
(SPWVD) is proposed to extract the time-frequency features of the preprocessed human motion echo signals. Principal component
analysis (PCA) was employed to reduce the dimension of the feature vectors, and the top 30 principal components with a high
cumulative contribution rate were selected as new feature vectors to be input into the RF classification model optimized by sparrow search
algorithm (SSA) for the identification of five distinct human similar drop actions in the presence of obstacles. The experimental outcomes
demonstrate that the pretreatment algorithm can effectively enhance the SNR of the action echo signal, and the PCA-SSA-RF
classification model can effectively distinguish five different human fall movements, overcome the particularity of data and the interference
of obstacles, with an accuracy rate as high as 96.6%. In the fall detection task within the real-time data stream, the average
classification accuracy of the model reaches 93%, and it is profoundly compared with RF, PSO-RF and other diverse classical
classification models, featuring high accuracy and short overall time, and possessing both accuracy and classification efficiency. The
superiority and effectiveness of the proposed method are verified.
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Table 4 Classification accuracy of models %

B Il o2 EhE3 BhfE4 IifES SFEMEREER
SVM 72.6  68.9 75.4 67.3 66. 5 70. 1
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RF 91.5 89.2 93.7 90. 6 90.7 91. 1
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Fig. 10  The fitness curve of different SSA-RF models.
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