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Abstract: The third-generation power semiconductor device-gallium nitride high electron mobility transistor ( GaN HEMT) has been
widely used in the fields of power electronics and communication electronics due to its excellent voltage and temperature tolerance. GaN
HEMT devices usually work under harsh external conditions such as high temperature and high power. In order to avoid the sudden
failure of GaN HEMT devices from affecting the normal operation of power electronic equipment, it is of great significance to carry out
active real-time state detection. By designing and conducting repetitive experiments under different temperature and drain-source voltage
conditions, the energy of the device stress wave is extracted and analyzed to explore the effects of temperature and drain-source voltage on
the GaN HEMT. Aiming at the problem that the device stress wave acquisition process is susceptible to noise interference, a stress wave
denoising algorithm based on variational mode decomposition (VMD) of goose optimization algorithm is proposed. The experimental
results show that the proposed GOOSE-VMD signal processing method can achieve good noise reduction while preserving the
characteristics of stress wave signals to the greatest extent possible; there is a good positive correlation between the device stress wave
energy and drain-source voltage; the energy of stress waves decreases with increasing temperature, but when the temperature reaches
82.05°C, the energy of stress waves increases with temperature.
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Fig.2  Junction temperature calibration experimental platform
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Table 3 Noise reduction effects of different algorithms

ERUSCR/S SNR/dB RMSE NCC
GWO-CEEMDAN 17.103 4 0.007 3 0.990 2
BWO-VMD 18.898 1 0. 006 0 0.993 6
SSA-VMD 18.579 9 0. 006 2 0.993 1
GOOSE-VMD 19.035 0 0. 005 9 0.993 8
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