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摘　 要:针对因角度训练标签冲突和可抓取区域与物体区域间的非一致性导致的现有抓取检测方法在复杂的非结构化抓取场

景中抓取检测准确性不足的问题,本文提出了一种自适应特征融合抓取检测网络 AFFGD-Net。 该网络首先采用基于分区法的

角度预测方法,将角度值编码为角度类别和偏移量两部分进行学习预测,冲突的角度值划分到同一类别,减少角度训练标签的

冲突,偏移量用于补偿分类部分的精度损失,提升网络对抓取角度的预测准确率。 其次,引入自适应感受野模块( ARFB)和注

意力跳跃连接模块 ASCM,ARFB 增强网络对多尺度可抓取区域特征的表征能力,并通过自适应融合不同尺度特征,提升对多尺

度物体的抓取检测能力,ASCM 通过自适应融合低层空间特征和高层语义特征以恢复可抓取区域的边缘特征,提高网络的抓取

角度和抓取宽度预测准确率。 最后,通过实验验证了所提网络的有效性。 在 Cornell 数据集的图像划分和对象划分测试模式

下,AFFGD-Net 的准确率分别达到 98. 9%和 97. 7%,在 Jacquard 数据集中准确率达到 95. 2%。 网络检测速度达到 111
 

FPS,显示

出良好的实时性。 实验结果表明,AFFGD-Net 在抓取检测的准确性和实时性方面均优于现有方法,验证了所提方法的有效性。
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Abstract:
 

To
 

address
 

the
 

problem
 

of
 

insufficient
 

grasp
 

detection
 

accuracy
 

of
 

existing
 

grasp
 

detection
 

methods
 

in
 

complex
 

unstructured
 

grasping
 

scenarios
 

due
 

to
 

the
 

conflict
 

of
 

angle
 

training
 

labels
 

and
 

the
 

non-consistency
 

between
 

graspable
 

regions
 

and
 

object
 

regions,
 

this
 

paper
 

proposed
 

an
 

adaptive
 

feature
 

fusion
 

grasp
 

detection
 

network,
 

AFFGD-Net.
 

The
 

network
 

firstly
 

adopted
 

the
 

angle
 

prediction
 

method
 

based
 

on
 

the
 

partition
 

method,
 

which
 

encoded
 

the
 

angle
 

values
 

into
 

two
 

parts,
 

namely,
 

angle
 

category
 

and
 

offset
 

for
 

learning
 

and
 

prediction.
 

The
 

conflict
 

angle
 

values
 

were
 

divided
 

into
 

the
 

same
 

category
 

to
 

reduce
 

the
 

conflict
 

of
 

angle
 

training
 

labels,
 

and
 

the
 

offset
 

was
 

used
 

to
 

compensate
 

for
 

the
 

loss
 

of
 

accuracy
 

in
 

the
 

classification
 

part
 

to
 

improve
 

the
 

prediction
 

accuracy
 

of
 

the
 

network
 

for
 

grasp
 

angle.
 

Secondly,
 

the
 

adaptive
 

receptive
 

field
 

block
 

ARFB
 

and
 

attention
 

skip
 

connection
 

module
 

ASCM
 

are
 

introduced.
 

ARFB
 

enhanced
 

the
 

network’s
 

ability
 

to
 

characterise
 

the
 

features
 

of
 

multi-scale
 

graspable
 

regions,
 

and
 

improved
 

the
 

grasp
 

detection
 

ability
 

of
 

multi-scale
 

objects
 

by
 

adaptively
 

fusing
 

features
 

of
 

different
 

scales.
 

ASCM
 

recovered
 

the
 

edge
 

features
 

of
 

the
 

graspable
 

regions
 

by
 

adaptively
 

fusing
 

the
 

low-level
 

spatial
 

features
 

and
 

the
 

high-level
 

semantic
 

features,
 

which
 

improved
 

the
 

network’s
 

grasp
 

angle
 

and
 

grasp
 

width
 

prediction
 

accuracy.
 

Finally,
 

the
 

effectiveness
 

of
 

the
 

proposed
 

network
 

was
 

verified
 

by
 

experiments.
 

The
 

accuracy
 

of
 

AFFGD-Net
 

reached
 

98. 9%
 

and
 

97. 7%
 

in
 

the
 

image
 

segmentation
 

and
 

object
 

segmentation
 

test
 

modes
 

in
 

the
 

Cornell
 

dataset,
 

respectively,
 

and
 

95. 2%
 

in
 

the
 

Jacquard
 

dataset.
 

The
 

detection
 

speed
 

of
 

the
 

network
 

reached
 

111
 

FPS,
 

which
 

showed
 

good
 

real-time
 

performance.
 

The
 

experimental
 

results
 

showed
 

that
 

AFFGD-Net
 

outperformed
 

the
 

existing
 

methods
 

in
 

terms
 

of
 

both
 

accuracy
 

and
 

real-time
 

crawl
 

detection,
 

confirming
 

the
 

effectiveness
 

of
 

the
 

proposed
 

method.
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0　 引　 言

　 　 近年来,智能机器人技术在工业、农业、商业、军事和

家庭服务等领域的应用得到了迅速发展[1] 。 抓取是机器

人应用场景中的常见任务,快速准确的抓取检测是实现

机器人成功抓取的关键环节。 面对复杂的非结构化抓取

场景,越来越多的研究者开始将深度学习方法应用于解

决抓取检测问题[2] 。
Morrison 等[3-4] 提出了一种生成式抓取检测方法

GGCNN,将图像中每个像素点均视为抓取点,通过网络

模型以抓取图的形式直接预测输出各抓取点位置的抓取

质量评分以及抓取角度和宽度两个位姿参数,实现了抓

取检测。 在 GGCNN 研究基础上,Wang[5] 等提出了一种

有向三角形的抓取位姿表示方法,替换语义分割网络

Deeplabv3+[6] 的输出部分构建了抓取检测网络。 该方法

实现了针对三指机器人的抓取位姿检测,提高了生成式

抓取检测方法的适用性。 Cao 等[7] 提出了一种全卷积抓

取检测网络,在研究中引入 SE 通道注意力机制[8] 并设计

了残差挤压和激励网络( RSEN)以增强深度特征的提取

能力。 通过设计多尺度空间金字塔模块( MSSPM)和层

级特征融合结构,网络获取了多尺度上下文信息。 该方

法增强了网络模型对复杂场景的适应性和鲁棒性,提高

了抓取检测的准确率。 尽管上述方法已经取得了不错的

检测效果,但它们大多基于图像中待抓取物体的全局特

征进行抓取位姿预测,忽略了可抓取区域与物体区域的

非一致性问题[9] ,非抓取区域的干扰特征可能会降低网

络的抓取检测准确率。
在抓取检测网络的性能优化过程中,训练数据的标

签质量对于模型学习抓取位姿起着至关重要的作用。
Chalvatzaki 等[10] 在研究中发现,GGCNN 方法生成的角度

图标签中存在角度值不连续性的问题,导致网络的角度

训练标签出现冲突,网络无法有效区分和学习正确的抓

取角度,抓取检测的准确率因此降低。 像素级的标注能

够为每个抓取位置提供准确的角度学习标签,减少冲突

以提高网络检测准确率,但人工对数据集进行逐像素的

重新标注极为耗时[11] 。 王文俊等[12] 将抓取角度按照每

60°划分为了 3 个区间,采用 3 个检测头分别进行学习和

预测,将互相冲突的角度标签分给不同的检测头进行学

习,可有效减少学习标签冲突,检测准确率得到了提升。
但该方法中每个检测头需要针对特定的角度区间进行优

化,导致训练过程更加困难和耗时且训练数据不平衡还

会导致模型只对特定区间角度的预测效果较好,泛化能

力受限。

针对角度训练标签冲突和可抓取区域与物体区域的

非一致性问题,提出一种基于自适应特征融合的生成式

抓取检测方法。 首先,提出一种基于分区法的角度预测

方法,将抓取角度编码为角度类别和偏移量两个部分进

行预测,偏移量用于补偿角度分类预测造成的精度损失,
通过将冲突的角度值划分到同一类别,减少角度训练标

签的冲突。 该方法不用耗费大量时间对数据集进行重新

标注,且无需采用多个检测头进行特定角度区间的优化

学习,模型训练简单,能够避免因角度训练数据不平衡导

致的模型泛化能力降低的问题。 然后,提出了自适应感

受野模块和注意力跳跃连接模块,利用注意力机制抑制

非抓取区域的干扰特征,引导网络在多尺度特征融合和

特征重构阶段关注可抓取区域特征,提升网络的抓取检

测准确率。

1　 问题描述

　 　 抓取检测是指获取待抓取物体的抓取位姿参数的过

程,在图像坐标系中,一组平面抓取位姿通常可以用五维

抓取参数进行表示:
g = (u,v,w,θ,q) (1)

式中:(u,v)指抓取中心点坐标,抓取宽度 w 指抓取时夹

爪需要开合的宽度,θ 指抓取角度,q 是指抓取质量,用于

评估在该点进行抓取的成功率,一组抓取位姿的五维抓

取表示如图 1 所示。

图 1　 五维抓取表示

Fig. 1　 Five-dimensional
 

grasp
 

representation

对于输入尺寸为 C×W×H 的图像 I,生成式抓取检测

方法将图像中的每一个像素点位置都视为一个潜在抓取

点,关联一组抓取位姿 g,这些图像空间中的抓取位姿集

合称为抓取图,表示为:
G = (Θ,W,Q) ∈ R3 ×W×H (2)

式中:Θ、W、Q 分别指抓取角度图、抓取宽度图和抓取质

量图,均是尺寸为 W×H 的图像,每个像素点位置都含有

表示该点抓取位姿的参数 θ、w 和 q 的值。 生成式抓取检

测即是根据输入图像 I,拟合输出抓取图 G 的过程,最后
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通过式(3)计算获得图像空间中的最佳抓取位姿。
g∗ =argmax

Q
G (3)

2　 抓取检测方法

2. 1　 抓取图标签生成

　 　 生成式抓取检测方法利用真值抓取图作为学习标签

进行训练,为了训练抓取检测网络,对 Cornell 和 Jacquard
抓取数据集中的矩形框抓取位姿标签进行转化,生成抓

取图标签,过程如图 2 所示。
定义抓取矩形中心 1 / 3 区域为图像掩膜,针对抓取

质量图标签 QT,将掩膜区域填充为 1,表示在该区域位置

进行抓取时的成功率为 1,其他区域填充为 0。 为了引导

网络模型学习最佳的抓取区域,强调物体中轴线处的最

大抓取成功率特性,采用一维高斯核对生成的 QT 中的数

值分布进行优化[13] :

qT(u,v) = qmin + (1 - qmin)exp - d2

2σ2( ) (4)

式中:qT ( u, v) 表示点( u, v) 处的抓取质量真值,d 为

点(u,v)处到矩形中轴线的垂直距离,qmin 为截断阈值取

0. 9。 同样的,在掩膜区域填充抓取矩形表示的抓取角度

θT、抓取宽度 wT 的值,其他区域填充为 0,分别生成角度

图标签 ΘT 和宽度图标签 WT。

图 2　 抓取图标签生成过程

Fig. 2　 Process
 

of
 

generating
 

grasp
 

map
 

label

2. 2　 自适应特征融合抓取检测网络

　 　 针对角度训练标签冲突和可抓取区域与物体区域的

非一致性问题, 提出自适应特征融合抓取检测网络

( adaptive
 

feature
 

fusion
 

grasp
 

detection
 

network, AFFGD-
Net),结构如图 3 所示。 网络采用编码器-解码器结构,
编码器部分用于特征提取, 包括主干网络 Mobilenet-
v3[14] 和自适应感受野模块 ARFB。 解码器部分包括注意

力跳跃连接模块 ASCM 和输出检测头 Head,用于接收编

码器的输出特征进行特征重构后输出抓取检测结果。 在

特征提取阶段,首先 Mobilenet-v3 接收多模态的 RGB-D
图像输入,由第 1 个倒残差块输出的 2 倍降采样特征一

个分支输入解码器,另一分支经后续 11 个倒残差块处理

输出 4 倍降采样特征。 然后将 Mobilenet-v3 输出的 4 倍

降采样特征输入 ARFB 进行多尺度特征提取和融合,提
升网络模型对不同尺度物体的抓取检测适应能力。 在特

征重 构 阶 段, 采 用 ASCM 将 ARFB 的 输 出 特 征 与

Mobilenet-v3 输出的 2 倍降采样特征进行融合,以恢复物

体边缘特征,提高网络模型的抓取角度和抓取宽度预测

准确性。 最后将重构后的特征输入 4 个独立任务分支检

测头,输出预测抓取图 G = (Θ,W,Q) ∈ R3 ×W×H 。
1)基于分区法的角度预测方法

抓取角度预测准确性直接关系到网络的抓取检测性

能,目前抓取检测中主要采用回归法和分类法两种方法

进行抓取角度预测。 回归法[3] 将抓取角度 θ 编码为

sin(2θ)和 cos(2θ)两个三角函数值的组合,利用网络分

别进行预测,将预测结果经过反三角函数处理后获得抓

取角度预测值。 分类法[5] 则是将连续的角度值按一定区

间大小划分为离散的角度类别,网络预测出角度类别后

即可获得角度预测值。
将密集重叠的抓取矩形标注转化为抓取图标签后,

如图 2 所示,角度图标签 ΘT 中存在角度值不连续的问

题。 利用回归法进行角度预测时,角度值不连续会导致

网络的角度训练标签存在冲突,造成网络学习混乱,限制

网络的检测性能。 利用分类法进行角度预测时,采用较

大的分类区间可以将冲突的角度值划分到同一类别,减
少角度训练标签的冲突,但预测出的角度值存在较大的

精度损失;若采用的分类区间较小则无法改善角度训练

标签冲突的问题。
因此,提出基于分区法的角度预测方法:将抓取角度

θ 编码为角度类别 c 和偏移量 r 两个部分进行预测,采用

一个较大的分类区间,将冲突的角度值划分到同一类别,
减少角度训练标签冲突,偏移量 r 用于补偿通过角度类

别 c 计算出的角度值的精度损失。
Cornell 和 Jacquard 数据集的 ΘT 中角度为[0,π]的

弧度值,根据预实验结果,按照每 π / 18 为一个区间划分

角度类别标签和偏移量标签进行 ΘT 的编码:
CT,RT = divmod ΘT, π / 18( ) (5)

式中:divmod 表示取商和余数的函数。 如图 4 所示,将抓

取角度图标签 ΘT 编码为角度类别图标签 CT 和偏移量

图标签 RT 后,角度训练标签的冲突问题得到明显改善,
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图 3　 AFFGD-Net
 

结构

Fig. 3　 AFFGD-Net
 

structure

图 4　 抓取角度图标签编码过程

Fig. 4　 Process
 

of
 

encoding
 

grasp
 

angle
 

map
 

label

为了便于网络训练,将偏移量图 RT 中的数值归一化

到[0,1]范围内。
AFFGD-Net 采用基于分区法的角度预测方法,利用

两个检测头分支分别进行抓取角度类别图 C 和偏移量图

R 两个部分的预测,整合后输出抓取角度图 Θ。

Θ = π
18

(C + R) (6)

2)自适应感受野模块

多尺度特征融合策略在目标检测和语义分割[15] 等

领域中广泛应用。 感受野模块 ( receptive
 

field
 

block,
RFB)通过融合不同感受野大小的全局多尺度特征,在针

对多尺度物体进行检测时,取得了很好的效果。 与目标

检测需要关注物体全局特征信息不同,因为抓取检测中

的可抓取区域往往不是全部的物体区域,要求网络更加

关注不同尺度物体的局部可抓取区域特征。 因此,在

RFB 中 引 入 卷 积 块 注 意 力 模 块 ( convolutional
 

block
 

attention
 

module,CBAM),引导网络更加有效地完成对多

尺度特征的提取和融合。 通过通道注意力模块( channel
 

attention
 

module, CAM ) 和 空 间 注 意 力 模 块 ( spatial
 

attention
 

module,SAM)分别生成通道注意力权重Mc 和空

间注意力权重 Ms 与输入特征进行相乘,对不同通道和不

同空间位置的特征进行加权,增加对重要特征的关注度,
CBAM 结构如图 5 所示。

图 5　 CBAM 结构

Fig. 5　 CBAM
 

structure

CAM 先对输入特征利用全局平均和最大值池化操

作整合出各个通道的全局特征,经多层感知机 MLP 处理

后将两部分特征相加,最后采用 sigmoid 函数激活后获得

输入特征的通道注意力权重 Mc
[16] ,过程如图 6 所示。

SAM 对输入特征在通道维度上进行全局平均和最

大值池化操作整合出各个空间位置的全局特征并拼接,
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图 6　 通道注意力权重生成过程

Fig. 6　 Process
 

of
 

generating
 

channel
 

attention
 

weights

经 7×7 卷积和 sigmoid 函数激活处理后,获得输入特征的

空间注意力权重 Ms ,过程如图 7 所示。

图 7　 空间注意力权重生成过程

Fig. 7　 Process
 

of
 

generating
 

spatial
 

attention
 

weights

　 　 将 SAM 和 CAM 嵌入 RFB 中,提出自适应感受野模

块(adaptive
 

receptive
 

field
 

block,ARFB)。 ARFB 接收主

干网络输出的 4 倍降采样特征后输入 3 个并联分支,分
别采用大小为{1,3,5}的卷积核和空洞率为{1,3,5}的

3×3 卷积提取不同感受野的多尺度特征,结合 SAM 自适

应学习不同空间位置特征的注意力权重,通过对可抓取

区域位置的特征进行加权,引导网络增强多尺度可抓取

区域特征的表征能力。 完成多尺度特征提取后,将 3 个

分支的输出特征进行通道维度拼接,利用 CAM 和 1×1 卷

积进行多尺度特征融合,通过 CAM 对不同通道的特征进

行加权,调整 3 个分支输出特征的融合权重,自适应融合

不同尺度的特征。 ARFB 通过通道注意力机制和空间注

意力机制抑制了非抓取区域的干扰特征,更有效地提取

和融合了多尺度特征,提高了网络模型对多尺度物体的

抓取检测适应能力。 ARFB 中采用深度可分离卷积以减

少模块参数量和降低计算复杂度,具体结构如图 8 所示。

图 8　 ARFB 结构

Fig. 8　 ARFB
 

structure

3)注意力跳跃连接模块

物体边缘信息有助于抓取角度和抓取宽度的准确预

测[11] ,随着网络深度的增加,提取的特征中含有丰富的

语义特征,但物体边缘等局部空间特征逐渐丢失[17] 。 跳

跃连接(skip
 

connection)结构指将编码器(下采样路径)
中的特征图与解码器(上采样路径)中对应的特征图进

行连接的技术,有助于将低层特征和高层特征进行融合,
恢复丢失的空间特征,提高网络的性能和准确性。 针对

抓取检测,由于可抓取区域与物体区域的非一致性,非抓

取区域中存在大量的干扰特征,直接使用跳跃连接融合

低层空间特征和高层语义特征进行物体边缘特征的恢复

可能会导致重要特征的丢失,削弱特征的有效性,造成网

络检测性能下降[18] 。 因此, 在跳跃连接结构中嵌入

CBAM, 提 出 了 注 意 力 跳 跃 连 接 模 块 ( attention
 

skip
 

connection
 

module,ASCM),结构如图 9 所示。
ASCM 先将 ARFB 输出的特征进行 2 倍上采样和 3×

图 9　 ASCM 结构

Fig. 9　 ASCM
 

structure

3 卷积处理,然后与 Mobilenet-v3 输出的 2 倍降采样特征

进行拼接,利用 CBAM 生成的通道注意力和空间注意力

权重对拼接好的特征进行加权,最后利用 1×1 卷积对加

权后的特征进行融合。 通过引入 CBAM,ASCM 能够有效

抑制非抓取区域中的干扰特征,实现低层空间特征和高
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层语义特征的自适应融合,恢复物体可抓取区域的边缘

特征,提高网络模型对抓取角度和抓取宽度的预测准

确性。
2. 3　 损失函数

　 　 AFFGD-Net 利用 4 个独立任务的检测头分别预测抓

取质量图Q、抓取宽度图W、抓取角度类别图 C 和偏移量

图 R 进行抓取检测,分别计算 4 个分支任务的损失,设计

多任务损失函数用于网络参数优化。 针对预测抓取质量

图 Q、抓取角度偏移量图 R 和抓取宽度图 W 的 3 个回归

任务,采用 Smooth
 

L1 函数作为损失函数,三者的损失函

数定义为:

LossQ,W,R = 1
N ∑

N

i
∑

y
SmoothL1(y i

T - y i)

y ∈ {Q,W,R}
(7)

其中,SmoothL1 定义为:

SmoothL1 =
0. 5(y i

T - y i) 2,if | y i
T - y i | < 1

| y i
T - y i | - 0. 5,其他{ (8)

式中:N 为样本数量, y i
T 为第 i 个样本的抓取标签真实

值, y i 为网络输出的抓取预测值。 针对抓取角度类别图

C 的预测任务,采用交叉熵函数定义损失函数:

LossC = - 1
N ∑

N

i
p i
T log(p i) (9)

式中:N 为样本数量, p i
T 为第 i 个样本的角度类别 one-hot

标签,p i 为网络输出的对应样本的角度类别概率。 最终,
总的多任务损失函数为:

Losstotal = LossQ,W,R + LossC (10)

3　 实验结果和分析

3. 1　 实验设置与评价指标

　 　 实验数据为 Cornell 和 Jacquard 抓取数据集。 Cornell
数据集规模较小,为了防止网络模型训练过拟合,采用数

据集在线增强策略,训练时对输入图像和学习标签进行

随机旋转和缩放。 按图像划分和对象划分两种方式对

Cornell 数据集进行训练集和测试集的划分,划分后的训

练集包括 708 张图像,测试集中包含 177 张。 Jacquard 数

据集规模较大,训练时不进行任何数据增强操作,按 9 ∶
1 的比例将其划分为训练集与测试集。 数据集中的图像

分辨率均调整为 256 × 256 大小,以适应 AFFGD-Net 的

输入。
采用 pytorch 深度学习框架进行 AFFGD-Net 的训练

和测试。 实验平台硬件为 Intel
 

Core
 

i7-12700K
 

CPU,
32

 

G
 

RAM,NVIDIA
 

GeForce
 

RTX
 

3080
 

GPU,10
 

G 显存。
网络训练采用 Adam 优化器进行参数优化,批大小设定

为 8,迭代次数设定为 40 个 epoch,针对 Cornell 数据集,

一次迭代设置 1
 

600 的批次以进行充分训练。 初始学习

率设置为 0. 001,采用 StepLR 学习率衰减策略,每训练

10 个 epoch 后,学习率衰减为原来的一半。
采用角度阈值和 Jaccard 系数标准[19] 作为抓取检测

正确的判别条件,只要网络预测出的抓取矩形框与标签

中的任何一个矩形框同时满足两者间的夹角小于 30°
 

和

Jaccard 系数大于 0. 25 两个条件,则表示该抓取预测正

确。 Jaccard 系数定义如下:

J(gp,g t) =
| gp ∩ g t |
| gp ∪ g t |

(11)

式中:gp 和 g t 分别表示预测抓取框和抓取框标签。 为了

计算 Jaccard 系数,将预测抓取矩形框的高度设为预测出

的抓取宽度 w 的 1 / 2。
3. 2　 消融实验

　 　 为了验证提出的 AFFGD-Net 中各个模块的有效性,
将 AFFGD-Net 中各个改进模块替换为原有结构设置基

线网络,即基线网络中采用原始 RFB 和跳跃连接结构。
同时,为了验证提出的基于分区法的角度预测方法的有

效性,基线网络中采用了回归法进行抓取角度预测。 通

过在基线网络基础上依次修改抓取角度预测方法为提出

的分区法,将原始 RFB 和跳跃连接替换为提出的 ARFB
和 ASCM 进行消融实验,实验数据为 Cornell 抓取数据

集,按照图像划分和对象划分两种方式划分训练集和测

试集,实验结果如表 1 所示。

表 1　 消融实验结果

Table
 

1　 Results
 

of
 

ablation
 

experiment

实验序号 方法
准确率 / %

图像划分 对象划分

1 基线 94. 9 95. 5

2 分区法 97. 1 96. 1

3 分区法+ARFB 98. 3 97. 1

4 分区法+ARFB+ASCM 98. 9 97. 7

　 　 对比实验 1 和实验 2,相较于基线网络,采用分区法

进行抓取角度预测后,在图像划分测试模式下准确率提

升了 2. 2%,对象划分模式下准确率提升了 0. 6%,表明提

出的基于分区法的角度预测方法有效减少了网络的角度

训练标签冲突问题,避免了网络学习混乱,抓取角度预测

准确率得到了提高。 对比实验 2 和实验 3,采用 ARFB
后,图像划分和对象划分测试模式下准确率分别提升了

1. 2%和 1%,说明相较于 RFB,ARFB 能够抑制非抓取区

域的干扰特征,通过增强多尺度可抓取区域特征的表征

能力和自适应融合不同尺度特征,提高了网络模型对多

尺度物体的抓取检测能力。 对比实验 3 和实验 4,采用

ASCM 后,图像划分和对象划分测试模式下准确率分别
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提升了 0. 6%,表明 ASCM 通过自适应融合低层空间特征

和高层语义特征,有效恢复了物体可抓取区域的边缘特

征,网络模型对抓取角度和抓取宽度的预测准确率得到

了提升。 实验结果表明,提出的基于分区法的角度预测

方法以及 AFFGD-Net 中的 ARFB 和 ASCM 改进模块可有

效提升网络的抓取检测准确率。
3. 3　 Cornell 数据集实验分析

　 　 AFFGD-Net 在 Cornell 数据集中的部分抓取检测结

果如图 10 所示,第 1 行图中展示的是网络预测出的抓取

质量图 Q,其中红色部分为物体的可抓取区域,值越接近

于 1,表示抓取成功率越高。 第 2 行显示的是通过获取抓

取质量图 Q 中的最大值位置,结合角度图 Θ和宽度图 W
中对应位置的角度值和宽度值后得出的最佳抓取位姿

g∗ 。 由检测结果可以看出 AFFGD-Net 能够适应不同形

状和尺度大小的物体进行抓取检测,面对帽子和耳机等

可抓取区域与物体区域不一致的不规则物体时,仍然能

够很好的关注到物体的可抓取区域,并预测出准确的抓

取角度和抓取位姿。

图 10　 Cornell 数据集检测结果

Fig. 10　 Detection
 

results
 

on
 

Cornell
 

dataset

　 　 AFFGD-Net 与其他抓取检测网络在 Cornell 数据集

中的检测准确率对比如表 2 所示。
表 2　 Cornell 数据集中检测准确率对比

Table
 

2　 Comparison
 

of
 

detection
accuracy

 

on
 

Cornell
 

dataset

方法
准确率 / %

图像划分 对象划分
速度 / FPS

Res-SENet[7] 96. 4 - 200
SGDN[5] 96. 8 92. 7 51. 6

GR-ConvNet[20] 97. 7 96. 6 50
SE-ResUNet[21] 98. 2 97. 1 40

AFFGD-Net 98. 9 97. 7 111. 6

　 　 Res-SENet、SGDN、GR-ConvNet 和 SE-ResUNet 等方

法由于忽略了可抓取区域与物体区域的非一致性和角度

训练标签冲突问题,非抓取区域的干扰加上网络无法学

习到正确的抓取角度,限制了上述网络的抓取检测性能。
得益于提出的基于分区法的角度预测方法避免了网络的

学习混乱,ARFB 和 ASCM 抑制了非抓取区域的干扰特

征,自适应融合生成有效特征,AFFGD-Net 在图像划分和

对象划分测试模式下,取得了最高的 98. 9%和 97. 7%的

检测准确率,由于采用了轻量化网络设计,检测速度可达

111
 

FPS,可进行实时抓取检测。

为了进一步验证 AFFGD-Net 的性能和稳定性,测试

了 AFFGD-Net 在不同角度阈值条件下的检测准确率,并
与其它方法进行对比。 如表 3 所示,AFFGD-Net 在角度

阈值取 10°
 

时,图像划分和对象划分测试模式下准确率

还能保持在 90% 以上,分别为 93. 2% 和 94. 4%,证明

AFFGD-Net 具有较强的抓取检测性能和稳定性。
表 3　 不同角度阈值下的准确率对比

Table
 

3　 Comparison
 

of
 

accuracy
 

at
different

 

angle
 

thresholds

方法 数据划分
角度阈值

30° 25° 20° 15° 10°

FCGN[22] 图像划分 97. 7 97. 7 97. 2 94. 4 86. 4
对象划分 96. 6 96. 0 95. 5 93. 2 85. 3

AFFGD-Net
图像划分 98. 9 98. 9 97. 2 96. 0 93. 2
对象划分 97. 7 97. 7 97. 2 96. 6 94. 4

3. 4　 Jacquard 数据集实验分析

　 　 Jacquard 数据集中部分检测结果如图 11 所示,能够

看出,抓取质量图 Q 中的值越接近于 1 的部分,均分布在

物体的可抓取区域。 检测结果表明 AFFGD-Net 面对

Jacquard 数据集中形状更复杂、更具挑战性的不同尺度

大小物体时,依然能够关注到物体的可抓取区域进行准

确的抓取检测。
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图 11　 Jacquard 数据集检测结果

Fig. 11　 Detection
 

results
 

on
 

Jacquard
 

dataset

　 　 为了测试 AFFGD-Net 在更大规模的数据集上的抓

取检测效果,进行了 Jacquard 数据集实验。 如表 4 所示

为 AFFGD-Net 与其他方法在 Jacquard 数据集实验中的

检测准确率对比结果,AFFGD-Net 取得了最高的 95. 2%
的检测准确率,进一步证明了提出的 ARFB、ASCM 模块

以及基于分区法的角度预测方法的有效性和 AFFGD-Net
良好的抓取检测泛化性能。

表 4　 Jacquard 数据集中检测准确率对比

Table
 

4　 Comparison
 

of
 

detection
 

accuracy
on

 

Jacquard
 

dataset
方法 准确率 / %

Jacquard[23] 74. 2
GG-CNN2[4] 84. 0

GR-ConvNet[20] 94. 6
Res-SENet[7] 94. 8
AFFGD-Net 95. 2

4　 结　 论

　 　 本文提出的自适应特征融合抓取检测网络 AFFGD-
Net,通过创新的基于分区法的角度预测方法和在 ARFB
及 ASCM 中注意力机制的应用,有效地解决了抓取检测

中的角度训练标签冲突和可抓取区域与物体区域间的非

一致性问题。 基于分区法的角度预测方法将抓取角度编

码为角度类别和偏移量两个部分进行预测,偏移量用于

补偿角度分类预测造成的精度损失,通过将冲突的角度

值划分到同一类别,减少了角度训练标签的冲突。 ARFB
和 ASCM 中利用注意力机制抑制非抓取区域的干扰特

征,引导网络在多尺度特征融合和特征重构阶段关注可

抓取区域特征。 AFFGD-Net 在 Cornell 数据集中准确率

最高达到了 98. 9%,在 Jacquard 抓取数据集中准确率达

到了 95. 2%,检测速度达到 111
 

FPS。 实验结果表明,所
提网络有效提高了非结构化场景中的抓取检测准确率,
相比现有方法具有更强的抓取检测性能和稳定性的同时

具有较好的实时性。 下一步工作是将 AFFGD-Net 应用

于实际的机器人抓取系统,进行更多的实验验证和优化,
推动技术的实用化进程。
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