
第 38 卷　 第 9 期

2024 年 9 月

电子测量与仪器学报

JOURNAL
 

OF
 

ELECTRONIC
 

MEASUREMENT
 

AND
 

INSTRUMENTATION
Vol. 38　 No. 9

· 85　　　 ·

收稿日期:
 

2024-04-16　 　 Received
 

Date: 2024-04-16
∗基金项目:国家自然科学基金(62171228)

 

、国家重点研发计划(2021YFE0105500)项目资助

DOI:
 

10. 13382 / j. jemi. B2407440

基于复杂网络演化博弈的无线传感器
网络入侵检测方法∗

王心怡1 　 行鸿彦1 　 史　 怡2 　 侯天浩1 　 郑锦程1

(1 南京信息工程大学电子与信息工程学院　 南京　 210044;
2.

 

中国铁道科学研究院集团有限公司通信信号研究所
 

北京　 100081)

摘　 要:针对无线传感器网络资源受限和入侵检测系统策略优化问题,本文提出一种基于复杂网络演化博弈的无线传感器网络

入侵检测方法。 结合小世界模型理论,模拟网络节点之间的连接关系,在不改变节点原有关系的前提下增强网络连通性并降低

传输能耗;构建关于簇头节点和恶意节点的无线传感器网络攻防博弈模型,通过收益矩阵计算节点收益,利用奖惩机制描述节

点在博弈过程中选择不同策略的收益变化;引入经验加权吸引力学习算法改进传统博弈的策略更新规则并将该算法应用于入

侵检测系统,使得簇头节点能够动态更新策略选择,得到不同条件下的入侵检测最优策略。 实验结果表明,与传统方法相比,所
提算法的簇头节点检测策略扩散深度可以达到 79%,该算法下簇头节点在保障自身检测收益的同时尽可能选择检测传感器网

络中出现的攻击,保证网络检测率并减少网络各类资源的消耗。
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Abstract:
 

Aiming
 

at
 

the
 

problem
 

of
 

limited
 

wireless
 

sensor
 

network
 

resources
 

and
 

intrusion
 

detection
 

system
 

strategy
 

optimization,
 

this
 

paper
 

proposes
 

a
 

wireless
 

sensor
 

network
 

intrusion
 

detection
 

method
 

based
 

on
 

complex
 

network
 

evolutionary
 

game.
 

Combined
 

with
 

the
 

small
 

world
 

model
 

theory,
 

the
 

connection
 

relationship
 

between
 

network
 

nodes
 

is
 

simulated,
 

and
 

the
 

network
 

connectivity
 

is
 

enhanced
 

and
 

the
 

transmission
 

energy
 

consumption
 

is
 

reduced
 

without
 

changing
 

the
 

original
 

relationship
 

of
 

nodes.
 

Then,
 

the
 

attack
 

and
 

defense
 

game
 

model
 

of
 

wireless
 

sensor
 

network
 

about
 

cluster
 

head
 

nodes
 

and
 

malicious
 

nodes
 

is
 

constructed.
 

The
 

node
 

income
 

is
 

calculated
 

by
 

the
 

income
 

matrix,
 

and
 

the
 

reward
 

and
 

punishment
 

mechanism
 

are
 

used
 

to
 

describe
 

the
 

income
 

change
 

of
 

nodes
 

choosing
 

different
 

strategies
 

in
 

the
 

game
 

process.
 

At
 

the
 

same
 

time,
 

the
 

empirical
 

weighted
 

attraction
 

learning
 

algorithm
 

is
 

introduced
 

to
 

improve
 

the
 

strategy
 

update
 

rules
 

of
 

the
 

traditional
 

game
 

and
 

the
 

algorithm
 

is
 

applied
 

to
 

the
 

intrusion
 

detection
 

system,
 

so
 

that
 

the
 

cluster
 

head
 

nodes
 

can
 

dynamically
 

update
 

the
 

strategy
 

selection
 

and
 

obtain
 

the
 

optimal
 

strategy
 

of
 

intrusion
 

detection
 

under
 

different
 

conditions.
 

The
 

experimental
 

results
 

show
 

that
 

compared
 

with
 

the
 

traditional
 

method,
 

the
 

diffusion
 

depth
 

of
 

the
 

cluster
 

head
 

node
 

detection
 

strategy
 

of
 

the
 

proposed
 

algorithm
 

can
 

reach
 

79%.
 

Under
 

this
 

algorithm,
 

the
 

cluster
 

head
 

nodes
 

choose
 

to
 

detect
 

the
 

attacks
 

in
 

the
 

sensor
 

network
 

as
 

much
 

as
 

possible
 

while
 

ensuring
 

its
 

own
 

detection
 

income,
 

so
 

as
 

to
 

ensure
 

the
 

network
 

detection
 

rate
 

and
 

reduce
 

the
 

consumption
 

of
 

various
 

resources
 

in
 

the
 

network.
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0　 引　 言

　 　 无线传感器网络(wireless
 

sensor
 

networks,
 

WSNs)是

一种由大量低成本、低功耗传感器节点构成的自组织协

作网络,因其网络部署简单、环境适应性强等特点,能够

实现对周围环境的实时监测,在军事、医疗、交通等领域

有着广泛的应用[1-2] ,同时这也对 WSNs 的安全防御性有

了更高的要求。
入侵检测系统( intrusion

 

detection
 

system,
 

IDS)是一

种重要的网络安全防护技术,能够有效感知网络攻击[3] ,
经过多年的研究已被熟练运用于 WSNs,但网络攻击手段

日渐多样化和智能化,单一的入侵检测技术难以满足网

络安全需求,需要结合新的网络防御技术弥补这一缺陷。
基于博弈论的网络入侵检测方法不需要额外数据建

立模型,相比其他方法复杂度较低,引起了广泛的关注和

应用。 王增光等[4] 提出了一种基于静态贝叶斯博弈的网

络入侵检测防御方法,以防御效能为标准进行防御策略

选取,但静态博弈模型无法模拟网络攻击的动态变化。
Shen 等[5] 建立了关于恶意攻击的微分博弈模型,IDS 可

以动态选择策略以达到最小化网络检测成本,抑制恶意

攻击行为。 Zhang 等[6] 将演化博弈与马尔可夫决策过程

结合,构建了多阶段 Markov 攻防博弈模型,但是该方法

采用传统演化博弈防御方法,难以准确预测攻击行为。
Han 等[7] 结合自回归理论,提出了一种基于博弈论和自

回归模型的网络入侵检测方法,通过求解纳什均衡解来

预测攻击行为,但是该方法在检测过程中会消耗大量网

络能量。 Liu 等[8] 提出了一种基于 WoLF-PHC 学习算法

的网络攻防随机博弈模型,使防御者在有限理性下面对

不同攻击者能做出最优选择,提高了防御及时性。 上述

方法都在一定程度上加强了网络的防御性能,提高了网

络入侵检测效率,但是没有针对 WSNs 节点的连接关系

做进一步的研究。
复杂网络[9] 用于研究大规模复杂系统,可以将网络

中不同个体之间的联系描绘成图中点到点的链接[10] ,刻
画博弈个体间的关系。 WSNs 在结构上由大量节点组

成,具有一定的复杂性;在行为上网络的拓扑结构会随着

节点死亡或加入产生复杂变化,具有一定的动态特性。
因此,借助复杂网络理论构建合适的 WSNs 演化博弈模

型是近年来的研究热点。
Lin 等[11] 根据复杂网络理论的网络拓扑优化解决

WSNs 的能源效率问题,利用网络节点的聚类特征,提出

了基于小世界网络的 WSNs 节能模型。 Bo 等[12] 利用多

信道技术和小世界网络特性,缩短了无线网络的平均路

径长度,提高了网络性能。 张静莲等[13] 优化网络拓扑结

构,提出了一种新的具有小世界特性的 WSNs 构造方法,

通过 Sink 节点建立捷径降低平均路径长度,使网络在低

冗余的条件下具有较好的防御性能。 上述方法通过不同

方法构建了 WSNs 模型,在一定程度上增强了传感器网

络的防御能力,但随着网络攻击技术的不断更新升级已

无法满足现阶段的网络安全需求。
基于复杂网络小世界模型理论,建立基于簇头节点

与恶意节点的 WSNs 攻防演化博弈模型,通过奖惩机制

描述簇头节点博弈收益的动态变化,提出一种注重经验

加权 和 适 应 能 力 的 学 习 算 法 ( experience
 

weighted
 

attraction,
 

EWA),使得簇头节点具有动态更新网络博弈

策略选择的能力,得到不同条件下的博弈最优策略,降低

节点能量消耗的同时延长网络生存周期。

1　 无线传感器网络攻防模型

1. 1　 网络分簇

　 　 为减少节点能耗、保障数据稳定传输,根据网络路由

协议[14] 将 WSNs 划分为多个相互连接的簇。 其中,每个

簇由一个簇头节点和若干普通节点组成,普通节点负责

处理监测环境内收集到的各类信息;簇头节点定期随机

产生,会将这些信息整合汇总发送到基站。 考虑到 WSNs
本身存在多种制约性,并且运行 IDS 会增加节点能耗,存
在簇头节点能量耗尽,普通节点升级成为簇头节点的可

能。 本章使用 IDS 混合部署模式[15] 均衡能量消耗和检

测效率,即在网络中的每个传感器节点都安装 IDS,但
是只开启位于簇头节点上的 IDS 用于识别网络攻击

行为。
1. 2　 攻防模型

　 　 WSNs 的攻击类型按照来源可以分为外部攻击和内

部攻击,外部攻击指的是攻击者使用 WSNs 外部设备进

行攻击,如物理捕获节点破坏网络结构等[16] ;内部攻击

指的是攻击者利用 WSNs 内部隐藏的恶意节点进行攻

击,如控制内部恶意节点拒绝或选择性转发有效信息,
甚至发送虚假信息。 建立的 WSNs 攻防模型如图 1
所示。

图 1　 无线传感器网络攻防模型

Fig. 1　 Attack-defense
 

model
 

for
 

WSNs
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2　 基于复杂网络的无线传感器网络演化博
弈模型

　 　 复杂网络和演化博弈结合形成了复杂网络上的演化

博弈这一新型交叉领域[17] ,为分析和预测 WSNs 环境下

的节点决策行为提供了一种新的研究框架,设定研究的

基本框架如图 2 所示。 首先,建立关于 WSNs 的演化博

弈模型,提出博弈基本假设,利用奖惩机制计算簇头节点

收益;然后,构建 NW
 

(newman-watts,
 

NW)小世界网络模

型模拟 WSNs 中各节点之间的博弈关系;最后,改进传统

博弈策略更新规则,引入 EWA 加权学习算法更新节点

策略。

图 2　 模型框架

Fig. 2　 Model
 

framework

2. 1　 演化博弈模型

　 　 不同于经典博弈论[18-19] ,演化博弈不要求每次博弈

的策略选择都是最优选择,而是考虑一个较长的时间周

期内,个体对自身策略进行学习和优化。 基于簇头节点

和恶意节点的网络攻防模型,给出以下演化博弈基本

假设:
假设 1:如果簇头节点选择检测网络是否受到攻击,

会产生启动 IDS 的检测成本 C 。 簇头节点安装 IDS 系统

需要耗费一定的时间、成本,并且启动 IDS 进行攻击检测

会消耗大量的网络能量。
　 　 假设 2:如果簇头节点检测成功,会获得检测奖励收

益 E ,此时,被检测到攻击的恶意节点会得到攻击损失

P 。 由于簇头节点开始检测就会产生检测成本,为提高

簇头节点选择检测攻击的积极性,假定对成功检测到攻

击的簇头节点给予一定的奖励,并可根据检测结果调整

奖励价值。 同时,被检测到攻击的恶意节点会得到一定

的损失。
假设 3:如果恶意节点发动攻击并且簇头节点没有

检测到,那么簇头节点要承担网络受到的攻击损失 W ,
此时恶意节点会获得攻击收益 A 。 在 WSNs 中,簇头节

点为了自身收益的最大化,会选择合理的博弈策略避免

网络损失,适当的惩罚措施可以促进簇头节点发起检测

攻击行为。
假设 4:如果某一簇头节点在某次博弈中没有启动

IDS,则会从其他簇头节点获得交互检测信息收益 D 。
WSNs 是一种自组织、开放的系统,节点通过无线通信的

方式实现彼此间的信息交互,因此,簇头节点能够共享检

测信息。

根据上述假设,构建簇头节点与恶意节点的演化博

弈支付矩阵,如表 1 所示。
表 1　 WSNs 演化博弈支付矩阵

Table
 

1　 WSNs
 

evolutionary
 

game
 

payoff
 

matrix

簇头节点
恶意节点

攻击 不攻击

检测 E - C,A - P E - C, - P
不检测 D - W ,A 0,0

2. 2　 NW 小世界网络

　 　 在规则网络中,每个节点都与固定数量的邻居节点

相连,具有高度的规律性和稳定性,但其平均路径长度较

长,不利于信息的快速传输。 完全随机的网络虽然节点

的平均路径长度可能会缩短,但节点聚集相对分散,难以

形成联系紧密的局部群体。 NW 小世界网络[20] 介于这两

种网络结构之间,可以通过一条很短的链路将分散的、关
系不紧密的个体联系在一起。 并且 NW 小世界网络可以

在不改变网络节点原有关系的前提下,通过随机加边的

方法增强网络的连通性。
在 WSNs 中,节点之间的数据传输是能量消耗的主

要来源,降低能耗可以通过降低节点的平均路径长度来

实现。 小世界网络具有聚集系数较大和平均路径长度较

短的特点,簇头节点具有较强的数据处理能力可以作为

聚集中心节点连接部分普通节点,形成聚簇群组,同时节

点之间的路径长度得到缩短,有利于提高 WSNs 性能。
因此,利用 NW 小世界网络模型可以更加贴切模拟 WSNs
节点入侵检测行为决策的演化博弈关系。

假定每个传感器节点都与相邻的 x 个邻居节点存在

信息交互关系,根据 NW 小世界网络特性,每次博弈之后
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节点都会以随机加边概率 ω 与任一非邻居节点重新建立

新的网络连接关系,概率 ω 越高,节点间的连接关系越

多,更加符合现实的 WSNs 节点连接结构。
基于此,构建 WSNs 入侵检测扩散网络 G = (V,R),

V = {v1,v2,…,vN} 表示所有节点的集合, R 表示所有节

点之间边的集合,代表节点间的连接关系,网络表达

式为:

R =
r11 … r1N

︙ ⋱ ︙
rN1 … rNN

é

ë

ê
ê
êê

ù

û

ú
ú
úú

(1)

其中, rij = 1 表示节点 vi 与 v j 之间存在连接关系,
rij = 0 则表示两者不存在关系,任何节点都不能与自身相

连[21] 。
2. 3　 基于经验加权吸引力学习算法的博弈模型

　 　 传感器节点内部嵌有微型操作系统,将经验加权吸

引力学习算法写入系统内可以使其具有一定的智能性,
簇头节点作为一种智能体能够不断检测攻击、执行收益

最大化策略。
1)

 

EWA 学习算法

传统博弈理论采用复制动态方程的思想进行策略更

新,在此基础上,提出一种注重经验加权和适应能力的吸

引力(experience
 

weighted
 

attraction,
 

EWA)学习算法作为

簇头节点的策略更新规则,定义一个衡量策略吸引力的

中间结构用于更新簇头节点的策略选择。
首先,定义第 t 次博弈簇头节点 i 选择策略 k 的收益

U i[ s
k
i ,s -i( t)] 为:
U i[ s

k
i ,s -i( t)] = α k

i + u[eki( t)] (2)
其中, S = { s1,…,sn} 表示博弈参与者的策略空间,

s -i 表示除了簇头节点 i 外所有参与节点的策略组合; α k
i

表示簇头节点 i 与其相邻节点博弈获得的历史累积收

益; u[eki( t)] 表示网络中同样选择策略 k 的节点带来的

信息交互收益。
根据复杂网络理论,网络中的博弈主体具有适应预

期行为的能力,即 WSNs 演化博弈具有显著的网络效应,
网络中的信息交互收益表示为:

u[eki( t)] = ∑
m

k = 1
δ ke

k
i( t)

1
β ,m ≥ 1,β > 1 (3)

其中, m 表示簇头节点 i 可以选择的策略个数; δ k 表

示网络效应参数,指策略 k 的价值取决于选择该策略的

其他节点的数量; β 表示网络效应指数,需要满足大于 1
以保证 u[eki( t)] 的二阶导数小于零; eki( t) 表示第 t次博

弈时,簇头节点 i 对同样选择策略 k 的节点数量的预测:
eki( t) = (1 - ε)·eki( t - 1) + ε·qk

i( t - 1) (4)
其中, ε 表示预测因子,取值越小说明上一次博弈选

择策略 k的节点预测数量在本次博弈中占比越大; qk
i( t -

1), t > 1 表示上一次博弈中选择策略 k 的节点的实

际数量。
EWA 学习算法中,每个博弈策略根据吸引力指数所

决定的概率大小被随机选择,吸引力指数越大的策略被

选择的概率更高,其更新规则是将 Ak
i( t) 设置为 t 时刻与

上一时刻吸引力 Ak
i( t - 1) 的加权平均收益,则第 t 次博

弈簇头节点 i 选择策略 k 的吸引力指数 A 表示为:

Ak
i( t) =

φ·N( t - 1)·Ak
i( t - 1) + U i[ s

k
i ,s -i( t)]

φ·N( t - 1) + 1
(5)

其中, φ 表示吸引力指数的折扣因子,取值越大说明

簇头节点对该策略的预期越高,选择该策略的可能性也

就越大; N( t) 表示经验权重,通常用来衡量过去经验在

本次博弈过程中的影响, N(0) 和 A(0) 取值范围是 [1,
2] 和 [1,3] 中的随机数。

2)
 

Logit 概率方程

传统博弈利用收益矩阵建立簇头节点的复制动态方

程对网络攻防状态进行分析,在给定初始选择概率的情

况下,EWA 学习算法使得簇头节点可以通过历史博弈信

息计算出选择任一防御策略所带来的吸引力,在入侵检

测时根据回报经验实时更新策略,并通过 Logit 方程决定

在 t + 1 时刻的最优策略选择。
利用 Logit 概率方程[22] 将吸引力指数 Ak

i 转化为策略

选择概率,即 t + 1 时刻簇头节点 i 选择策略 k 的概率

P 为:

Pk
i( t + 1) =

exp[σ·Ak
i( t)]

∑ m

k = 1
exp[σ·Ak

i( t)]
(6)

其中, σ 表示吸引力指数 Ak
i 的敏感系数,用于判断

博弈决策者策略选择是否理性,取值越高说明决策者的

理性程度越高,能够在充分考虑实际情况下选择合适的

WSNs 入侵检测防御策略。

3　 演化博弈仿真与分析

　 　 构建基于复杂网络的 WSNs 演化博弈入侵检测过程

如下:
步骤 1)随机生成具有 100 个传感器节点的网络模

型,每个节点的初始化能量设为 2. 5
 

J;
步骤 2)利用分簇协议对网络结构进行划分,假定节

点被随机选为簇头节点的概率为 0. 1,即网络中包含 10
个簇头节点和 90 个普通节点,其中存在若干恶意节点隐

藏在普通节点中;
步骤 3)根据小世界网络理论,进一步完善 WSNs 模

型,每个节点都与相邻 x = 5 个节点建立连接;
步骤 4)建立簇头节点与恶意节点的 WSNs 博弈模

型,利用奖惩机制计算节点博弈收益;
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步骤 5) t = 1 开始博弈,簇头节点开启 IDS;
步骤 6)簇头节点以概率 ω 与任意非相邻的节点建

立新的连接关系,并依据 EWA 学习算法调整下一时刻博

弈策略;
步骤 7)簇头节点断开上次连接,以概率 ω 与非相邻

节点建立新链接,再次利用 EWA 学习算法调整策略达到

演化稳定;
步骤 8)对上述步骤进行多次重复模拟仿真,减少随

机过程带来的误差,直到 t = 10。
3. 1　 演化博弈仿真参数初始值设置

　 　 仿真实验主要考虑演化博弈过程中,不同奖惩机制

及参数对于簇头节点检测策略扩散深度的影响,扩散程

度越深说明选择检测的概率越大,网络中的簇头节点在

面对攻击时更倾向选择检测策略,网络安全防御得到保

障。 结合相关文献[23],设置初始参数如表 2 所示。

表 2　 演化博弈参数设置

Table
 

2　 Parameter
 

setting
 

of
 

evolutionary
 

game
符号表示 符号含义 假设初始值

N 无线传感器网络节点个数 100
p 节点随机选为簇头节点的概率 0. 1
x 相邻节点个数 5
ω 随机加边概率 0. 3
P 簇头节点初始检测概率 0. 3
β 网络效应指数 2
δk 网络效应参数 6
ε 预测因子 0. 5
φ 吸引力指数的折扣因子 0. 5
σ 吸引力指数的敏感系数 5

3. 2　 奖惩机制对入侵检测的影响

　 　 在 WSNs 入侵检测博弈中,节点更倾向于选择收益

最大化策略,而节点策略收益大小受奖惩机制的影响,确
定合适的奖惩取值激励簇头节点选择检测策略是 WSNs
入侵检测算法的研究重点。

根据 WSNs 通常情况下的经验值及各参数意义,假
设簇头节点使用 IDS 的检测成本 C = 5、恶意节点攻击成

功的收益 A = 10、攻击被检测到的损失 P = 5,通过改变

E、W 取值,观察奖惩机制如何影响簇头节点决策。
1)簇头节点检测到攻击的收益 E
图 3 表示 P = 0. 3、W = 10、D = 0 时,簇头节点在不同

奖励措施下的检测策略扩散深度。 从图 3( a)中可以看

出,随着奖励 E 的不断增大,簇头节点在入侵检测博弈过

程中选择检测攻击的概率也在逐渐变大;当 E = 0 或 5
时,节点策略的扩散深度在 0. 3 ~ 0. 4 变化,说明没有检

测奖励或者奖励过小对节点策略选择影响不大;当 E =
10 时,相较之前两种情形,检测策略的扩散深度有了大

幅提高,快速达到 0. 62 后稳定波动;当 E = 15 时,簇头节

点选择检测的概率最高,达到了 0. 73。
图 3(b)在图 3(a)的基础上,将 D 的取值增加到 10,

通过改变奖励 E ,观察不同 E 值下的检测策略扩散深度。
如图 3(b)所示,簇头节点获得交互检测信息收益 D 后,
策略扩散深度整体相比图 3(a)有了一定的提升,涨幅在

10%左右; E = 0 依旧是策略扩散最低的,经过博弈后略

高于初始检测概率,在 0. 4 左右;当 E = 5 和 15 时,其策

略扩散深度变化趋势相近,在 0. 6 ~ 0. 7 波动; E = 10 时,
簇头节点选择检测策略的概率最大,达到平衡后趋近于

0. 8,说明当奖励 E 强度超过簇头节点自身承受极限后,
节点会选择降低策略扩散深度保证网络 IDS 正常运行。

图 3　 不同奖励措施下的簇头节点检测策略扩散趋势

Fig. 3　 The
 

diffusion
 

trend
 

of
 

cluster
 

head
 

node
 

detection
strategy

 

under
 

different
 

reward
 

measures

图 3 表明,一般情况下检测到攻击的奖励 E 越大,簇
头节点选择检测策略的概率越高,但要根据实际选择合

适的奖励措施,当检测奖励增加到一定值时策略概率选

择反而减小。 综上,选择 E = 10 作为奖励措施,该措施下

的检测策略扩散深度能快速升至 0. 8,进一步鼓励簇头
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节点启用 IDS 对网络中的攻击行为进行检测。
2)簇头节点没有检测到攻击的损失 W
图 4 展示了当 P = 0. 3、E = 10、D = 0 时,不同惩罚力

度对于簇头节点检测策略选择的影响。 由图 4( a)可知,
损失 W 越小,入侵检测策略扩散越深;当 W = 0 时,簇头

节点开启 IDS 实行检测策略的扩散深度接近 1,并且随着

惩罚力度加大,簇头节点会逐渐降低检测策略的选择以

减少检测失败带来的网络能量损失,当 W = 15 时,簇头

节点检测概率甚至低于初始概率 0. 3,下降至 2. 8。
与图 4(a)不同,图 4(b)在其他条件不变的情况下,

将 D由 0 增加到 10。 从图 4(b)可以看出,加入交互信息

收益 D 后,不同惩罚力度下的节点检测概率都有所提高,
均大于初始检测概率 0. 3; W = 0 时的扩散深度虽然相较

于图 4(a)下降到 0. 8,但是幅度变化更加符合实际场景。

图 4　 不同惩罚措施下的簇头节点检测策略扩散趋势

Fig. 4　 The
 

diffusion
 

trend
 

of
 

cluster
 

head
 

node
 

detection
strategy

 

under
 

different
 

punishment
 

measures

总体来看,当 W = 0 时,簇头节点选择检测策略的概

率最大,但实际 WSNs 攻防场景中,必然存在检测失败后

网络受到攻击造成一定损失; W = 5 时,无论有无节点间

的信息共享,检测策略的扩散深度都较高且保持在 0. 6 ~

0. 7 之间;当W = 10 或15 时,图 4 中的策略扩散深度趋势

相近,说明继续加大惩罚对于簇头节点策略选择影响不

大且检测策略扩散深度较低。 因此,取 W = 5 作为惩罚,
既能激励簇头节点实行攻击检测,又能减少能量损耗,维
护网络安全。
3. 3　 演化博弈模型的参数敏感性分析

　 　 通过奖惩机制对簇头节点策略选择的影响分析,确
定 E = 10、W = 5、D = 10 为奖惩机制取值,促使簇头节点

在博弈时尽可能选择检测策略。
在假定的模型场景下,通过改变博弈参数的取值,观

察 WSNs 簇头节点检测策略演化曲线的变化情况,比较

簇头节点检测策略扩散深度对不同参数的敏感程度。
1)改变初始检测概率

图 5 表示不同初始概率 P 条件下的簇头节点检测策

略扩散深度。 当 P 相同时,簇头节点从其他相邻节点获

得的交互信息收益 D 越多,策略扩散越深;当 P 不同时,
交互信息收益对节点策略选择影响不大,初始选择概率

越高,其对应的策略扩散效果越好,簇头节点启用 IDS 检

测攻击的可能性就越大。
当 P = 0. 3 时,簇头节点会快速提高 IDS 检测概率抑

制恶意节点攻击,此时网络处于激烈的攻防博弈状态,恶
意节点攻击被抑制后,簇头节点也会相应减少 IDS 的开

启,曲线呈现波动状态,经过一段时间博弈达到平衡,簇
头节点选择检测策略的扩散深度在 0. 5 ~ 0. 6 之间;当 P
较大为 0. 6 时,节点进一步提高了检测概率,但由于策略

初始扩散深度较高,因此策略扩散幅度较为平缓。

图 5　 不同初始检测概率的敏感性分析

Fig. 5　 Sensitivity
 

analysis
 

of
 

the
 

different
initial

 

detection
 

probabilities

2)改变传感器网络节点数量

如图 6 所示,表示簇头节点检测策略在不同网络节

点数量情况下的扩散深度,分别对 N 取 100、200、300、
400、500 进行仿真。 簇头节点检测策略扩散深度整体波

动趋势相似,经历一系列攻防对抗后策略扩散趋于平缓。
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网络节点数量在 100、300 和 400 时,达到烟花稳定均衡

后节点扩散深度在 0. 65 左右; N = 200 时节点选择检测

策略的概率反而最低;网络节点规模达到 500 时,簇头节

点检测概率提高至 0. 82,簇头节点检测到攻击后加大检

测规模抑制攻击行为。 由图 6 可知,不同的 WSNs 节点

数量会对博弈策略的选择产生一定的影响,在构建模型

时要考虑这一因素,选择合适的节点数量,以达到博弈收

益最大化。

图 6　 不同节点数量的敏感性分析

Fig. 6　 Sensitivity
 

analysis
 

of
 

the
 

different
 

number
 

of
 

nodes

3)改变 EWA 学习算法关键参数

为进一步分析簇头节点策略选择是否受其他参数影

响,改变 EWA 学习算法中的部分关键参数,如表 3 所示。
情形 1 使用初始仿真数值作为对照组,每种情形基于情

形 1 改变某一参数的初始值。

表 3　 EWA 学习算法的参数设置

Table
 

3　 Parameter
 

settings
 

for
 

the
 

EWA
learning

 

algorithm
仿真实验 β δk ε φ

情形 1:对照组 2 6 0. 5 0. 5
情形 2:增大网络效应指数 3 6 0. 5 0. 5
情形 3:减小网络效应参数 2 2 0. 5 0. 5
情形 4:减小收益预测因子 2 6 0. 1 0. 5

情形 5:增大吸引力指数折扣因子 2 6 0. 5 0. 9

　 　 如图 7 所示,情形 1 ~ 5 的节点策略扩散深度变化趋

势类似。 情形 1 作为对照组,其结果符合上述结论,检测

策略最终扩散至 0. 71;情形 2 增大网络效应指数后,检测

策略扩散深度呈现先大幅度增大至 0. 82,经过波动变

化,最终减小至 0. 58 的变化过程,说明增大网络效应指

数会降低网络启动 IDS 的概率;情形 3 ~ 5,分别通过减小

网络效应参数、减小收益预测因子和增大吸引力指数折

扣因子来判断策略选择的影响因素,情形 3 ~ 5 均在情形

1 的附近波动,说明改变这 3 种参数对节点策略选择的

影响不明显。

图 7　 EWA 学习算法关键参数的敏感性分析

Fig. 7　 Sensitivity
 

analysis
 

of
 

the
 

key
 

parameters
in

 

EWA
 

learning
 

algorithm

3. 4　 不同策略更新规则对比

　 　 博弈参与者学习和策略调整方式是复杂网络演化博

弈的核心,采用 EWA 加权学习算法改进传统的 Logit 策
略更新规则,与费米更新规则[24] 、马尔可夫更新规则[25]

进行对比。 根据上述对 WSNs 入侵检测过程中奖惩机制

和参数敏感性分析,取初始检测概率为 0. 1,仿真结果如

图 8 所示。

图 8　 不同策略更新规则对比

Fig. 8　 Comparison
 

of
 

the
 

different
 

strategy
 

update
 

rules

3 种方法经过一段时间均能达到演化稳定,费米策

略更新规则以每一次的博弈收益为重点,忽略过去的历

史博弈收益,策略的扩散深度在 40%;马尔可夫策略更新

规则本质是随机学习,博弈参与者采用混合策略随机学

习的方式更新目标函数,相比费米规则扩散深度提高了

18%;而提出的改进后的策略更新算法的策略扩散深度

最高在 79%左右,高于其他两种算法,说明 EWA 学习算

法有利于帮助簇头节点尽可能选择检测策略,增强网络

防御。
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3. 5　 节点平均剩余能量

　 　 图 9 展示了随着博弈进程未启动 IDS 防御、只开启

位于簇头节点的 IDS、全面启动 IDS
 

3 种情况下的网络节

点平均剩余能量。 网络未开启 IDS 防御时,节点仅需要

维持 WSNs 正常运行,没有额外的检测能量消耗,剩余能

量最多;若是开启所有节点的 IDS,节点能量会被大量消

耗,加重网络运行负担;当选择只开启位于簇头节点的

IDS 时,不仅保证了 WSNs 的防御能力,还减少了网络资

源开销。

图 9　 节点平均剩余能量

Fig. 9　 Average
 

residual
 

energy
 

of
 

nodes

4　 结　 论

　 　 在已有的基于博弈论的入侵检测算法基础上,通过

引入复杂网络中的 NW 小世界模型理论,进一步描述

WSNs 节点的连接关系和行为决策,构建了基于复杂网

络演化博弈的 WSNs 入侵检测模型,缩短了节点之间的

平均路径长度,减少 WSNs 在传输过程的能量损耗;并且

改进传统博弈的策略更新规则,提出了一种基于 EWA 加

权学习算法的网络入侵检测方法,通过定义一个衡量策

略吸引力的中间结构判断簇头节点下一步的策略更新,
通过改变节点在不同策略的奖惩收益寻找合适的奖惩机

制使得簇头节点选择检测攻击时的策略吸引力最大,保
证自身收益的同时做到了对网络攻击的检测。 仿真实验

表明,选取合适的博弈参数能够激励簇头节点开启 IDS
检测攻击,基于复杂网络演化博弈的入侵检测方法使得

簇头节点及时调整检测策略来实现有效的入侵防御,保
证了 IDS 检测效率,检测策略的扩散深度最高可达 79%。
但是目前建立的模型与实际 WSNs 场景存在一定差异,
没有考虑传感器网络外部环境因素干扰带来的影响,
在未来的研究中,会考虑引入节点的生成与消亡机制,
采集真实网络数据进行实验,更加准确地描绘网络攻

防情况。
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