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Research on rotor structure optimization of synchronous
reluctance motor based on machine learning
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Abstract: To address the issue of serious torque ripple in synchronous reluctance motors, a multi-objective intelligent optimization
method for the rotor structure of synchronous reluctance motors is proposed based on machine learning. First, the rotor structural
parameters to be optimized for the synchronous reluctance motor are obtained through magnetic circuit analysis, and sensitivity analysis is
conducted using the finite element method to determine the variables and their ranges for optimization. Second, a deep neural network is
introduced to establish a non-parametric rapid calculation model for the synchronous reluctance motor, and a nonlinear mapping
relationship between the optimized variables and torque is constructed to accurately model the electromagnetic characteristics of the
motor. Based on this, an improved particle swarm optimization algorithm based on reinforcement learning is proposed. This approach
adjusts the learning factors of the optimization algorithm online according to the reward function mechanism in reinforcement learning,
improving the convergence speed and global optimization accuracy of the particle swarm optimization algorithm. Finally, with the
objectives of minimizing torque ripple and increasing average torque, the improved particle swarm optimization algorithm and the deep
neural network model are used for global optimization of the motor rotor structural parameters under multiple operating conditions. The
simulation and experimental results show that the optimized synchronous reluctance motor using the proposed method not only has lower
torque ripple compared to the initial motor model, but also slightly increases the average torque.
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Table 2 Level table of SynRM structural parameters

3 DNN #BIHy ST 28 JKF 1 S K3 K- 4
a,/mm 7.6 7.7 7.8 7.9
, U . ay/mm 7.2 7.3 7.4 7.5
DNN 2 1 Z2 2 28 U AL — P N TR 22 M 45 1 o/ 42 43 id 4
— » 7 N 3 ) ) ) )
2 AR YW TGS /0 A W = N 0 e R I = RN S IR a,/mm 2.7 2.8 2.9 3.0
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x3I HEREIEE
Table 3 Sample database
5 a/mm ay/mm ay/mm ay/mm g/mm L OLFYERE/N-m L OVEEANKS)/ % 0. 51 F3¥%H/N-m 0. 5L #Hi k3%
1 7.6 7.2 4.2 2.7 1 98. 154 7. 849 33.399 11.577
2 7.7 7.2 4.2 2.7 1 97.752 7.939 33.287 11.531
3 7.8 7.2 4.2 2.7 1 97.239 8.036 33.191 11.412
102 7.9 7.5 4.5 2.8 2.5 94. 327 9. 554 33.151 20. 754
1023 7.9 7.5 4.5 2.9 2.5 94, 285 9. 567 33.038 20. 717
1024 7.9 7.5 4.5 3.0 2.5 9. 113 9. 605 32.937 20. 658
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