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摘　 要:针对同步磁阻电机运行过程中严重的转矩脉动问题,提出一种基于机器学习的同步磁阻电机转子结构多目标智能优化

方法。 首先,通过磁路分析获得同步磁阻电机待优化转子结构参数,并利用有限元法进行敏感度分析,确定待优化变量与范围。
其次,引入深度神经网络建立同步磁阻电机非参数快速计算模型,构建待优化变量与转矩之间的非线性映射关系,完成电机电

磁特性精确建模。 在此基础上,提出一种基于强化学习的改进粒子群算法,根据强化学习中奖励函数机制在线调整优化算法的

学习因子,提高粒子群算法的收敛速度和全局寻优精度。 最后,以最小化转矩脉动和提高平均转矩为优化目标,采用改进粒子

群算法与深度神经网络模型,实现同步磁阻电机转子结构参数的多工况全局优化。 仿真与实验结果表明,所提出方法优化后的

同步磁阻电机相较初始电机模型,不仅具有更低的转矩脉动,而且平均转矩输出略有增加。
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Abstract:
 

To
 

address
 

the
 

issue
 

of
 

serious
 

torque
 

ripple
 

in
 

synchronous
 

reluctance
 

motors,
 

a
 

multi-objective
 

intelligent
 

optimization
 

method
 

for
 

the
 

rotor
 

structure
 

of
 

synchronous
 

reluctance
 

motors
 

is
 

proposed
 

based
 

on
 

machine
 

learning.
 

First,
 

the
 

rotor
 

structural
 

parameters
 

to
 

be
 

optimized
 

for
 

the
 

synchronous
 

reluctance
 

motor
 

are
 

obtained
 

through
 

magnetic
 

circuit
 

analysis,
 

and
 

sensitivity
 

analysis
 

is
 

conducted
 

using
 

the
 

finite
 

element
 

method
 

to
 

determine
 

the
 

variables
 

and
 

their
 

ranges
 

for
 

optimization.
 

Second,
 

a
 

deep
 

neural
 

network
 

is
 

introduced
 

to
 

establish
 

a
 

non-parametric
 

rapid
 

calculation
 

model
 

for
 

the
 

synchronous
 

reluctance
 

motor,
 

and
 

a
 

nonlinear
 

mapping
 

relationship
 

between
 

the
 

optimized
 

variables
 

and
 

torque
 

is
 

constructed
 

to
 

accurately
 

model
 

the
 

electromagnetic
 

characteristics
 

of
 

the
 

motor.
 

Based
 

on
 

this,
 

an
 

improved
 

particle
 

swarm
 

optimization
 

algorithm
 

based
 

on
 

reinforcement
 

learning
 

is
 

proposed.
 

This
 

approach
 

adjusts
 

the
 

learning
 

factors
 

of
 

the
 

optimization
 

algorithm
 

online
 

according
 

to
 

the
 

reward
 

function
 

mechanism
 

in
 

reinforcement
 

learning,
 

improving
 

the
 

convergence
 

speed
 

and
 

global
 

optimization
 

accuracy
 

of
 

the
 

particle
 

swarm
 

optimization
 

algorithm.
 

Finally,
 

with
 

the
 

objectives
 

of
 

minimizing
 

torque
 

ripple
 

and
 

increasing
 

average
 

torque,
 

the
 

improved
 

particle
 

swarm
 

optimization
 

algorithm
 

and
 

the
 

deep
 

neural
 

network
 

model
 

are
 

used
 

for
 

global
 

optimization
 

of
 

the
 

motor
 

rotor
 

structural
 

parameters
 

under
 

multiple
 

operating
 

conditions.
 

The
 

simulation
 

and
 

experimental
 

results
 

show
 

that
 

the
 

optimized
 

synchronous
 

reluctance
 

motor
 

using
 

the
 

proposed
 

method
 

not
 

only
 

has
 

lower
 

torque
 

ripple
 

compared
 

to
 

the
 

initial
 

motor
 

model,
 

but
 

also
 

slightly
 

increases
 

the
 

average
 

torque.
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0　 引　 言

　 　 同步磁阻电机(synchronous
 

reluctance
 

motor,SynRM)
具有成本低、效率高、调速范围宽、无需稀土永磁材料等

显著优势,在航空航天、矿山机械、电动汽车等领域应用

前景广阔[1-3] 。 然而,SynRM 严重的转矩脉动极大阻碍了

其在高性能场合的应用。 SynRM 转矩脉动主要是由于电

机转子表现出高度各向异性以及定子电负荷中的谐波与

转子凸极性作用导致[4] 。 因此,SynRM 转子结构对于转

矩性能具有重要影响。 为减小转矩脉动,国内外学者针

对 SynRM 转子结构优化,如调整磁障数量、改变磁障形

状和大小等,开展了大量研究。
精确的电机电磁计算模型是实现 SynRM 转子结构

优化的重要前提。 目前 SynRM 电磁特性建模主要分为

解析法和有限元法两种类型。 解析法通过推导结构参数

对输出转矩的影响来分析电机性能[5-6] 。 虽然解析法建

模实时性较强,但建模过程中需要设定大量边界条件,并
且参数设置过于理想化,导致模型精度较低。 有限元法

能够在建立电机有限元模型的基础上,实现电机性能的

精确分析和计算[7-8] 。 然而,有限元法仿真计算需要大量

时间,难以满足优化算法的实时性要求。 随着深度神经

网络( deep
 

neural
 

networks,DNN) 等机器学习方法的兴

起,国内外研究者开始尝试应用机器学习方法建立电机

非参数快速计算模型,以平衡模型求解精度与计算速

度[9] 。 文献[10] 提出一种适用于无刷直流电机的多层

感知机神经网络模型,相比解析模型的优化性能更好。
文献[11]基于卷积神经网络模型优化了永磁同步电机

的转子结构。 文献[12] 将加权随机森林模型用于永磁

同步直线电机结构优化,实现了最佳推力性能和低推力

波动。 鉴于机器学习模型在电机电磁特性计算方面的显

著优势,探索适用于 SynRM 拓扑与电磁特性的 DNN 建

模方法十分必要且迫切。
在获得 SynRM 电磁计算模型之后,需要对电机结构

参数进行全局优化。 群智能算法作为一种新兴的演化计

算技术,被广泛用于电机结构参数优化[13] 。 文献[14]使

用快速非支配分选遗传算法对永磁辅助型 SynRM 转子

拓扑结构开展多目标优化设计,从算法生成的 Pareto 前

沿中选取最优设计,显著改善了电机的转矩性能。 文献

[15]基于粒子群优化( particle
 

swarm
 

optimization,PSO)
算法针对 SynRM 各种定子和转子槽组合进行优化,显著

降低了转矩脉动。 文献[16] 采用伴随变量法对铁损进

行敏感性分析,在此基础上完成 SynRM 结构优化,成功

减小了铁损与转矩脉动。 然而,上述 SynRM 结构多目标

优化算法参数固定且整定时间长,导致优化算法收敛速

度慢,容易陷入局部最优。

针对上述 SynRM 电磁建模及结构优化难题,提出一

种基于机器学习的 SynRM 转子结构多目标优化方法。
通过磁路分析确定待优化变量,引入 DNN 建立 SynRM
非参数快速计算模型,实现转矩特性高精度、高效率求

解。 在此基础上,提出一种基于强化学习( reinforcement
 

learning,
 

RL)的改进 PSO 算法,利用 RL 机制自适应调整

PSO 算法的学习因子,提高多目标优化的收敛速度与精

度。 最后,以最小化转矩脉动和提高平均转矩为目标,对
SynRM 转子结构参数进行综合寻优,获取转子结构最优

参数组合,并通过仿真和实验验证了所提出方法的有

效性。

1　 SynRM 磁路分析模型

　 　 以 4 层转子磁障为例,SynRM 转子结构如图 1 所示,
图中 r0 为转子外径,r1 为转子内径,an 为第 n 层磁障宽

度,ln 为第 n 层磁障弧长,g 为周向磁桥宽度。

图 1　 SynRM 转子结构图

Fig. 1　 SynRM
 

rotor
 

structure

对 SynRM 而言,转子磁障结构是影响其转矩性能的

主要因素。 为深入分析 SynRM 转子磁障结构与输出转

矩之间的关系,建立转子等效磁路模型如图 2 所示。 其

中,Rbn 为第 n 层磁障磁阻,Φbn 为第 n 层磁障磁通,fsn 为

第 n 层磁障磁动势,frn 为第 n 层导磁块磁动势。

图 2　 等效磁路模型

Fig. 2　 Equivalent
 

magnetic
 

circuit
 

model

基于 SynRM 等效磁路模型可快速计算电机电磁转

矩。 定子磁动势在转子坐标系下可表示为[17] :
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fs(θr) =
3NpIm

πp ∑
i = 0, ±1, ±2…

v = 6i+ 1

kwv

v
cos(vpθr + (v - 1)ωt - α)

(1)
式中:Np 为定子绕组每相串联总匝数,Im 为定子电流幅

值,kwv 为第 v 次谐波的绕组系数,v 为定子电流空间谐波

次数,θr 为静止坐标系下的位置,μ0 为真空磁导率,l f  为

铁芯轴向有效长度,δf 为气隙有效长度,α 为定子电流矢

量与 d 轴夹角,Dg 为气隙直径,θbn 为磁障边缘与 q 轴的

夹角。
第 n 层磁障和导磁块的磁阻为:

Rbn =
an

μ0 ln l f
(2)

Rgn =
δf

μ0

Dg

2
Δθn l f

(3)

第 n 层磁障和导磁块的磁通为:

ϕbn =
frn - fr(n+1)

Rbn
(4)

ϕgn =
fsn - frn
Rgn

(5)

两层磁障之间的角度为:
Δθn = θbn - θb(n-1) (6)
第 n 层转子磁动势为:

fsn = 1
2Δθn

(∫
mπ
2p -θb(n - 1)

mπ
2p -θbn

( fs(θr)dθr) +

∫
mπ
2p +θbn

mπ
2p +θb(n- 1)

( fs(θr)dθr)) (7)

第 n 层导磁块磁动势为:

frn = Dg ∑
i = 0, ±1, ±2,…

ν = 6i+ 1

kwν

(νp) 2 (cosλν)ρk (8)

其中,

λv =
vmπ

2
+ (v - 1)ωt - α

ρk = ∑
n-1

i = 1
(mk,i - mk,i+1)sin(vpθbi) + mk,nsin(vpθbn)

mi,j =
b i,j + ∑

n

q = i+ 1
[(􀰒

q-1

l = i
h l)bq,j],i ≥ j

∑
n

q = j
[(􀰒

q-1

l = i
h l)bq,j],i < j

ì

î

í

ïï

ïï

h i = 1

1 +
Dg

δf

a i

l i
∑
i -1

j = 1
(􀰒

i -1

n = j
hnΔθ j) + Δθi[ ]

b i,j =
Dg

2δf

a i

l i
􀰒

i

n = j
hn,i ≥ j (9)

式中:m= 1,3,5,…,4p-1,最终计算电机转矩为:

T =
μ0pDg l f

2δf
∫2π

0
fr(θr)

dfs(θr)
dθr

dθr (10)

由式(7) ~ (10) 可得,SynRM 转子磁障宽度和弧长

对电机输出转矩具有重要影响。 其中,磁障弧长可由转

子周向磁桥宽度来调整。 因此,选取磁障宽度 an 和周向

磁桥宽度 g 作为 SynRM 转子结构的待优化设计变量。
虽然上述解析模型可以描述电机结构参数与输出性能之

间的关系,但是磁路法建模需要做出一系列理想假设,并
且参数之间存在耦合关系,定量计算精度较低,难以满足

后续优化算法计算精度的需求。 因此,在选定待优化变

量后,引入深度神经网络建立 SynRM 快速计算模型。

2　 SynRM 样本数据库

2. 1　 有限元模型

　 　 以 3 相 4 极 48 槽 SynRM 为例,样机基本参数如表 1
所示。

表 1　 SynRM 基本参数

Table
 

1　 Basic
 

parameters
 

of
 

SynRM

参数 值

定子槽数 48
额定功率 / kW 15

额定转速 / ( r·min-1 ) 1
 

500
额定电流 / A 30
定子外径 / mm 260
转子外径 / mm 169
气隙长度 / mm 1

第 1 层磁障宽度 / mm 7. 7
第 2 层磁障宽度 / mm 7. 2
第 3 层磁障宽度 / mm 4. 3
第 4 层磁障宽度 / mm 2. 8
周向磁桥半径 / mm 1. 5

　 　 根据样机参数,建立样机有限元模型,其磁场强度分

布如图 3 所示。

图 3　 SynRM 磁场强度分布

Fig. 3　 Distribution
 

of
 

SynRM
 

magnetic
 

field
 

intensity
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SynRM 电磁转矩方程可表示为:

Te = 3
2
p(Ld - Lq) iq id (11)

式中:Ld,Lq 分别是电机定子 d 轴和 q 轴电感,id,iq 分别

是电机定子 d 轴和 q 轴电流,p 是电机极对数。
为评价各方法的转矩脉动抑制效果,定义转矩脉动

系数 γ,其计算公式如式(12)所示。

γ =
max(Te ) - min(Te )

Tavg

× 100% (12)

式中:Tavg 为瞬时转矩 Te 的平均值。
为准确分析 SynRM 输出转矩性能与转子各层磁障

宽度 an 以及周向磁桥宽度 g 之间的敏感度关系,采用有

限元仿真计算 SynRM 平均转矩和转矩脉动随转子各层

磁障宽度以及周向磁桥宽度的变化趋势,仿真结果如图

4 所示。
从图 4 可以看出,SynRM 转子磁障宽度 an 和周向磁

桥宽度 g 对电机平均转矩和转矩脉动均具有显著影响。
有限元仿真虽然精度较高,但计算耗时较长,难以满足

SynRM 结构优化的实时性要求。 为此,将有限元仿真作

为样本数据生成工具,为后续建立 DNN 模型并进行转子

结构智能优化提供数据样本。
2. 2　 样本数据库建立

　 　 根据 SynRM 样机初始尺寸与有限元仿真结果确定 5
因素 4 水平变量表,具体如表 2 所示。 表 2 中 5 因素 4
水平共有 1

 

024 种正交组合方式,为实现 SynRM 在不同

工况下的转矩性能优化,选用额定电流(1. 0I)和 0. 5 倍

额定电流(0. 5I)两种典型工况建立样本数据库,利用有

限元仿真参数化扫描建立的样本数据库如表 3 所示。

3　 DNN 模型的建立

　 　 DNN 是由多层神经元组成的一种人工神经网络,网
络中神经元相互连接,形成复杂的计算结构,具体如图 5
所示。

图 4　 平均转矩和转矩脉动随转子参数变化曲线

Fig. 4　 Curves
 

of
 

average
 

torque
 

and
 

torque
ripple

 

with
 

varying
 

rotor
 

parameters

表 2　 SynRM 结构参数水平表

Table
 

2　 Level
 

table
 

of
 

SynRM
 

structural
 

parameters
参数 水平 1 水平 2 水平 3 水平 4
a1 / mm 7. 6 7. 7 7. 8 7. 9
a2 / mm 7. 2 7. 3 7. 4 7. 5
a3 / mm 4. 2 4. 3 4. 4 4. 5
a4 / mm 2. 7 2. 8 2. 9 3. 0
g / mm 1. 0 1. 5 2. 0 2. 5

表 3　 样本数据库

Table
 

3　 Sample
 

database
序号 a1 / mm a2 / mm a3 / mm a4 / mm g / mm 1. 0I 平均转矩 / N·m 1. 0I 转矩脉动 / % 0. 5I 平均转矩 / N·m 0. 5I 转矩脉动 / %

1 7. 6 7. 2 4. 2 2. 7 1 98. 154 7. 849 33. 399 11. 577
2 7. 7 7. 2 4. 2 2. 7 1 97. 752 7. 939 33. 287 11. 531
3 7. 8 7. 2 4. 2 2. 7 1 97. 239 8. 036 33. 191 11. 412
… … … … … … … … …

1
 

022 7. 9 7. 5 4. 5 2. 8 2. 5 94. 327 9. 554 33. 151 20. 754
1

 

023 7. 9 7. 5 4. 5 2. 9 2. 5 94. 285 9. 567 33. 038 20. 717
1

 

024 7. 9 7. 5 4. 5 3. 0 2. 5 94. 113 9. 605 32. 937 20. 658
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3. 1　 DNN 算法结构

　 　 为使模型从简单线性映射,到对高度非线性问题进

行有效建模,对 DNN 各层加激活函数:
o i = σ(x i) = σ(W io i -1 + b i) (13)

式中:o i 为第 i 层网络输出,W i,b i 分别为 i 和 i-1 层之间

的权重和偏差,σ 为激活函数,选取 ReLU 为激活函数:
σ = max(0,x) (14)
DNN 训练过程包括逐层初始化和误差反向传播两

个阶段。 随机设置节点的权重和偏差,输入数据通过每

一层进行前向传播,得到预测结果。 通过计算预测误差,
并使用反向传播算法,从输出层开始逐层计算梯度,表示

预测误差对每层权重和偏差的影响。 利用随机梯度下降

法对 DNN 权重和偏差进行更新[18-19] :

(W i,b i) - ε ∂D
∂(W i,b i)

→ (W i +1 ,b i +1 ) (15)

式中:ε 为学习率,D 为代价函数。
采用均方根值误差(root

 

mean
 

square
 

error,RMSE)检
验模型精度,具体如式(16)所示。

RMSE = 1
m∑ m

i = 1
(y i -ŷ i)

2 (16)

式中:m 样本数量。 y i 为真实值, ŷ i 为预测值。

图 5　 DNN 回归结构图

Fig. 5　 DNN
 

regression
 

structure

3. 2　 平均转矩及转矩脉动建模

　 　 以 SynRM 磁障宽度 a1、a2、a3、a4 与周向磁桥宽度 g
等 5 个转子结构参数作为输入,平均转矩 Tavg 及转矩脉

动系数 γ 为输出,采用 DNN 建模的具体步骤如下:
1)

 

将表 3 中 1
 

024 组样本数据随机分成 820 组训练

样本数据和 204 组测试样本数据,并归一化到 [ 0,1]
区间。

2)
 

根据样本数据集规模确定 DNN 参数,DNN 包含

5 输入 2 输出和 3 个隐含层,对模型中的权重和偏置参数

进行初始化。
3)

 

采用 820 组训练样本数据对 DNN 模型进行训

练,使模型能准确预测平均转矩和转矩脉动。
4)

 

根据 204 组测试集评估训练好的 DNN 模型性能

表现,计算转矩脉动预测的 RMSE。
3. 3　 模型精度校验

　 　 为验证 DNN 优越性,引入传统 BP 神经网络回归建

模算法进行对比。 对 204 组测试集样本进行预测,两种

模型的拟合结果对比如图 6 所示, RMSE 对比如图 7
所示。

图 6　 转矩及转矩脉动模型精度校验

Fig. 6　 Accuracy
 

verification
 

of
 

torque
 

and
 

torque
 

ripple
 

model

图 7　 转矩及转矩脉动的 RMSE
Fig. 7　 RMSE

 

for
 

torque
 

and
 

torque
 

ripple

以上的分析结果表明 DNN 网络的 RMSE 明显小于

BP 神经网络,DNN 相较于传统的 BP 神经网络,在处理

非线性问题方面具有更强的能力。 这是由于 DNN 的多

层隐藏层结构和大量神经元的组合,使得它能够有效地

学习和表示复杂的非线性关系。 相比之下,传统的 BP
神经网络通常只有一到两个隐藏层,限制了其对非线性

问题的表达能力。 因此,DNN 在训练数据外的预测数据

上表现更好,并具有更强的适应性和泛化能力,可以为后

续优化提供更为准确的模型。
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4　 SynRM 多目标优化

　 　 为保证不同工况下 SynRM 的转矩输出性能均能到

达最优,提出一种基于 RL 的改进 PSO 算法,并通过调用

DNN 快速计算模型进行目标函数计算与迭代寻优,实现

电机转子结构参数的多目标优化。
4. 1　 多目标优化函数设计

　 　 为使 SynRM 各输出性能尽可能达到全局最优,选择

以削弱电机转矩脉动为目标,考虑到电机整体的性能,在
充分降低电机转矩脉动时,也要保持相对较高的平均转

矩,因此设计多目标优化函数为:

f = γ
Tavg

(17)

同时,为了保证 SynRM 在不同工况下都可以满足性

能要求,得到电机在不同工况下的全局最优结构参数,将
多目标优化函数修正为:

f = γ(1. 0I)
Tavg(1. 0I)

× γ(0. 5I)
Tavg(0. 5I)

(18)

考虑到电机自身的尺寸要求以及图 4 所示的结构参

数对电机性能的影响,最终设计的多目标优化模型如

式(19)所示。

minf = γ(1. 0I)
Tavg(1. 0I)

× γ(0. 5I)
Tavg(0. 5I)

s. t.

7. 6 < a1 < 7. 9
7. 2 < a2 < 7. 5
4. 2 < a3 < 4. 5
2. 7 < a4 < 3. 0
1. 0 < g < 2. 5

ì

î

í

ï
ï
ï

ï
ï
ï

(19)

4. 2　 基于 RL 的改进 PSO 算法

　 　 PSO 算法基本思想是通过个体的合作和信息共享来

探索潜在的最优解[20] 。
vt +1( i) = ωvt( i) + c1r1(pbest

t( i) - px t( i)) +

c2r2(gbest
t( i) - x t( i))

x t +1( i) = x t( i) + vt +1( i)

ì

î

í

ï
ï

ïï

(20)

式中:c1,c2 为学习因子,r1,r2 为(0 ~ 1)之间的随机数,ω
为惯性权重,t 为算法当前迭代次数;pbest t( i)与 gbest t( i)
分别为第 i 个粒子在 t 时刻个体最优位置和种群的全局

最优位置;x t( i)与分别 vt( i)为 t 时刻第 i 个粒子的位置

和速度。
上式中学习因子对 PSO 算法的寻优能力具有重要

影响。 学习因子 c1 有利于加速算法的收敛速度,但容易

陷入局部最优,c2 有利于增加算法的全局搜索能力,但容

易导致早熟收敛。 传统 PSO 算法中采用固定学习因子,
难以同时兼顾算法的收敛速度与精度。 因此,本文通过

建立当前迭代的适应度函数变化情况与下次迭代中的学

习因子的联系,并以此建立奖励函数,引入 RL 在线调整

PSO 算法的学习因子,以增强 PSO 算法的寻优能力。
将 RL 用于动态调整 PSO 算法的学习因子,可以极

大提高 PSO 算法的搜索性能,实现个体和全局最优解之

间的平衡。 选用 RL 改进 PSO 算法进行多目标优化的算

法流程如图 8 所示。

图 8　 改进 PSO 算法流程

Fig. 8　 Flowchart
 

of
 

the
 

improved
 

PSO
 

algorithm

具体步骤如下:
1)

 

初始化 PSO 与 RL 模型, c1 和 c2 初始值设为

1. 5,ω 为 0. 8,粒子规模为 50,速度范围为[0,1]。
2)

 

调用适应度函数式 ( 18),计算每个粒子适应

度值。
3)

 

更新个体历史最优位置和全局最优位置。
4)

 

定义 RL 状态空间 S 为 c1,c2 取值,动作空间 A 为

c1,c2 变化情况(1 为减小 0. 1,2 为增加 0. 1,3 为不变),
奖励选取新、旧全局最优解之间的差值,Q-table 如表 4 所

示,定义适应度函数差值如式(21)所示。
δgbest( i) = f[gbest( i)] - f[gbest( i - 1)] (21)
定义奖励 r 如式(22)所示。

r =
1,(δgbest( i) > 0)
0,(δgbest( i) ≤ 0){ (22)

在状态 S 中,遍历动作 A,并得到 r 和新状态,RL 更

新公式为:
Q(s,a) ← (1 - β)Q(s,a) +
β[ r + λmaxa′Q(s′,a′) - Q(s,a)] (23)
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表 4　 Q-table
Table

 

4　 Q-table
参数 action1 action2 action3
state1 q(1,1) q(1,2) q(1,3)
state2 q(2,1) q(2,2) q(2,3)

式中:β 为学习律,λ 为折扣因子,取 β= 0. 1,λ= 0. 9。
5)

 

通过奖励,训练 RL 模型,并通过式(23)使用 RL
模型训练得到最佳的策略如式(24)所示,并输出 c1,c2。

π( s) = argmax
a∈| A|

Q( s,a) (24)
6)

 

使用新的学习因子进行步骤 2) ~ 3),直到达到迭

代次数,选择迭代次数为 30。
当迭代次数达到 30 时中止迭代并将此时最优解作

为优化问题的近似最优解,传统 PSO 算法与改进 PSO 算

法的迭代过程如图 9 所示,优化结果如表 5 所示。

图 9　 迭代过程对比

Fig. 9　 Comparison
 

of
 

iterative
 

processes

表 5　 优化结果

Table
 

5　 Optimization
 

results

参数 初始值 PSO 算法 改进 PSO 算法
a1 / mm 7. 7 7. 854 7. 882
a2 / mm 7. 2 7. 419 7. 357
a3 / mm 4. 3 4. 251 4. 287
a4 / mm 2. 8 2. 854 2. 961
g / mm 1. 5 2. 053 2. 107

5　 仿真及实验分析

5. 1　 仿真验证

　 　 为验证所提出 SynRM 转子优化算法的有效性,根据

表 5 中优化结果,在 Ansoft
 

2019
 

R3 环境下搭建 SynRM
样机仿真模型分别对优化前后的电磁转矩进行仿真分

析,SynRM 多目标优化流程如图 10 所示,仿真结果如图

11 和 12 所示。
图 11 给出了额定电流( 1. 0I) 与 0. 5 倍额定电流

(0. 5I)两种典型工况下优化前、传统 PSO 算法优化后和

改进 PSO 算法后的 SynRM 电磁转矩输出曲线。 图 12 显

示了优化前、传统 PSO 算法优化后和改进 PSO 算法后

图 10　 SynRM 多目标优化流程

Fig. 10　 Multi-objective
 

optimization
 

process
 

of
 

SynRM

图 11　 SynRM 电磁转矩波形

Fig. 11　 Electromagnetic
 

torque
 

waveforms
 

of
 

SynRM

SynRM 平均转矩和转矩脉动的详细对比结果。 从图 11
与 12 中可以看出,经过传统 PSO 算法后的 SynRM 相比

初始样机,在额定电流下的平均转矩升高了 0. 598
 

N·m,
转矩脉动下降了 21. 60%;在 0. 5 倍额定电流下的平均转

矩升高了 0. 167
 

N·m,转矩脉动下降了 39. 74%。 与初始

样机相比,改进 PSO 算法后的 SynRM 在额定电流下平均

转矩提高了 0. 816 N·m,转矩脉动下降了 49. 50%;在 0. 5
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倍额定电流下平均转矩升高了 0. 334 N·m,转矩脉动下

降了 50. 51%。 从仿真结果可以看出基于 RL 的改进

PSO 算法后的 SynRM 拥有更高的平均转矩和更低的转

矩脉动。

图 12　 SynRM 转矩性能对比

Fig. 12　 Comparison
 

of
 

SynRM
 

torque
 

performance

5. 2　 实验验证

　 　 为进一步验证 SynRM 优化结果的正确性,根据基于

RL 的改进 PSO 算法优化结果制作试验样机,并搭建样

机测试平台,对所提出方法进行实验验证。 根据表 5 给

出的改进 PSO 算法优化后转子参数,并结合实际工艺需

求,最终制作的转子冲片如图 13 所示,SynRM 测试平台

如图 14 所示。

图 13　 SynRM 样机转子冲片

Fig. 13　 The
 

rotor
 

punching
 

of
 

SynRM
 

prototype

SynRM 驱动系统测试平台机械部分由试验样机、转

图 14　 SynRM 驱动系统测试平台

Fig. 14　 Test
 

platform
 

for
 

SynRM
 

drive
 

system

矩传感器和电涡流制动器组成;电气部分由上位机、
MicroLabBox 控制器、转接及驱动电路组成。 为验证所设

计 SynRM 样机的转矩输出性能,通过调节负载电涡流制

动器输出力矩,控制电机分别运行在额定电流(1. 0I)和

0. 5 倍额定电流(0. 5I) 两种典型工况,并观测计算其相

电流与电磁转矩输出数值。 实验结果如图 15 和 16
所示。

图 15　 1. 0 倍额定电流下 SynRM 实验结果

Fig. 15　 Experimental
 

results
 

of
 

SynRM
 

at
 

1. 0
 

times
 

rated
 

current

图 15 和 16 分别给出了 SynRM 样机运行在额定转

速 1
 

500
 

r / min 时 1. 0 倍与 0. 5 倍额定电流下的转矩优化
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图 16　 0. 5 倍额定电流下 SynRM 实验结果

Fig. 16　 Experimental
 

results
 

of
 

SynRM
 

at
 

0. 5
 

times
 

rated
 

current

仿真与实测结果对比。 从图中可以看出,SynRM 样机有

限元仿真波形在 1. 0 倍额定电流和 0. 5 倍额定电流下的

平均转矩分别为 97. 551
 

Nm 和 33. 819
 

N·m,转矩脉动分

别为 6. 303% 和 9. 998%; SynRM 样机转矩实测波形在

1. 0 倍额定电流和 0. 5 倍额定电流下的平均转矩分别为

94. 43
 

N·m 和 31. 68
 

N·m, 转矩脉动分别为 10. 59%
和 18. 27%。

为了进一步验证优化后 SynRM 输出转矩性能,分别

给出了额定转速时 SynRM 样机运行在不同电流工况下

的转矩优化仿真与实测结果对比。 具体结果如图 17
所示。

如图 17( a)所示,优化后 SynRM 样机仿真与实验测

量的平均转矩数值基本吻合,仿真值与实测值之间的误

差在 3. 2
 

N·m 以内。从图 17(b)可以看出,优化后转矩脉

动仿真数值与实测转矩脉动存在一定差距,两者之间的

最大差值为 8. 85%。 这是由于有限元仿真中未考虑功率

驱动器件开关时间、电磁噪声等对转矩带来的影响,造成

实验测量转矩脉动高于仿真数值。 总的来说,优化后

SynRM 样机仿真转矩与样机实测转矩性能基本保持一

致,验证了优化结果的正确性。

6　 结　 论

　 　 为解决 SynRM 转矩脉动抑制难题,提出了一种基于

图 17　 不同电流工况下转矩性能对比

Fig. 17　 Comparison
 

of
 

torque
 

performance
under

 

different
 

current
 

conditions

机器学习的 SynRM 转子结构优化方法。 通过引入 DNN
建立 SynRM 电磁计算模型,构造转子结构参数与输出转

矩之间的精确映射,兼顾了转矩求解精度和计算效率。
在此基础上,利用 RL 在线调整 PSO 算法学习因子,并通

过改进 PSO 算法调用 DNN 模型计算目标函数,求取转矩

综合性能最优下的转子结构参数最优解。 仿真与实验结

果表明,基于所提出 SynRM 转子结构优化方法获得的转

子参数组合能够在提高平均转矩的同时显著降低电机转

矩脉动。 在未来研究中,将设计包含电机成本、电流畸变

率和电机效率等更多元素的目标函数, 进一步提升

SynRM 应用性能。

参考文献

[ 1 ]　 REN
 

L,
 

WANG
 

H,
 

ZHONG
 

Z,
 

et
 

al.
 

Dynamic
 

characterization
 

of
 

SynRM
 

with
 

dual-Axis
 

hybrid
 

excitation
 

self-commissioning[ J].
 

IEEE
 

Transactions
 

on
 

Industrial
 

Electronics,
 

2024,
 

71(5):
 

4440-4449.
[ 2 ]　 LIU

 

C
 

T, SU
 

Y
 

J, YEN
 

SH
 

CH, et
 

al.
 

A
 

convenient
 

analytical
 

model
 

for
 

predicting
 

direct-on-line
 

synchronous
 

reluctance
 

motor
 

operations
 

at
 

different
 

environments[J].
 

IEEE
 

Transactions
 

on
 

Industry
 

Applications,
 

2024,
 

60(2):
 

2756-2763.
[ 3 ]　 赵子安,

 

王一帆,
 

李凤姣,
 

等.
 

考虑铁损的同步磁阻

电机最小损耗控制策略[J].
 

电机与控制学报,
 

2023,
 

27(11):
 

1-9.
ZHAO

 

Z
 

A,
 

WANG
 

Y
 

F,
 

LI
 

F
 

J,
 

et
 

al.
 

Minimum
 

losses
 

control
 

strategy
 

of
 

synchronous
 

reluctance
 

motors
 



　 第 9 期 基于机器学习的同步磁阻电机转子结构优化研究 ·125　　 ·

considering
 

iron
 

losses [ J ].
 

Electric
 

Machines
 

and
 

Control,
 

2023,
 

27(11):
 

1-9.
[ 4 ]　 TAWFIQ

 

K
 

B,
 

ABDEL-KHALIK
 

A
 

S,
 

IBRAHIM
 

M
 

N,
 

et
 

al.
 

A
 

rewound
 

five-phase
 

synchronous
 

reluctance
 

machine:
 

operating
 

voltage,
 

inductance
 

analysis
 

and
 

comparison
 

with
 

conventional
 

multiphase
 

machines [ J].
IEEE

 

Transactions
 

on
 

Industry
 

Applications,
 

2024,
 

60(1):
 

12-27.
[ 5 ]　 刘荣哲,

 

董砚,
 

梁晶.
 

新型同步磁阻电机星形转子结

构设计与分析[J].
 

电机与控制学报,
 

2022,
 

26(10):
 

49-55.
LIU

 

R
 

ZH,
 

DONG
 

Y,
 

LIANG
 

J.
 

A
 

stroid
 

rotor
 

structural
 

design
 

and
 

analysis
 

of
 

a
 

synchronous
 

reluctance
 

motor[J].
 

Electric
 

Machines
 

and
 

Control,
 

2022,
 

26(10):
 

49-55.
[ 6 ]　 WOO

 

T
 

G,
 

PARK
 

S
 

W,
 

CHOI
 

S
 

C,
 

et
 

al.
 

Flux
 

saturation
 

model
 

including
 

cross
 

saturation
 

for
 

synchronous
 

reluctance
 

machines
 

and
 

its
 

identification
 

method
 

at
 

standstill[J] .
 

IEEE
 

Transactions
 

on
 

Industrial
 

Electronics,
 

2023,
 

70(3):
 

2318-2328.
[ 7 ]　 许孝卓,

 

郭国宾,
 

封海潮,
 

等.
 

五相 U 型永磁凸极直

线电机对比分析[ J].
 

电子测量与仪器学报,
 

2023,
 

37(12):
 

176-185.
XU

 

X
 

ZH,
 

GUO
 

G
 

B,
 

FENG
 

H
 

CH,
 

et
 

al.
 

Comparative
 

analysis
 

of
 

five-phase
 

U-shaped
 

permanent
 

magnet
 

salient
 

pole
 

linear
 

motor[J].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2023,
 

37(12):
 

176-185.
[ 8 ]　 AMIN

 

MASOUDI
 

M,
 

AFSARI
 

S
 

A.
 

The
 

optimal
 

design
 

and
 

an
 

analysis
 

of
 

a
 

hybrid
 

w-shaped
 

IPM
 

rotor
 

of
 

coaxial
 

magnetic
 

gear[J].
 

IEEE
 

Access,
 

2024,
 

12:
 

81067-81074.
[ 9 ]　 黄朝志,

 

张文进,
 

李海雯,
 

等.
 

多目标算法分层优化

策略在开关磁阻电机中的应用[ J].
 

电子测量与仪器

学报,
 

2024,
 

38(1):
 

124-133.
HUANG

 

ZH
 

ZH,
 

ZHANG
 

W
 

J,
 

LI
 

H
 

W,
 

et
 

al.
 

Application
 

of
 

multi-objective
 

algorithm
 

layered
 

optimization
 

strategy
 

in
 

switched
 

reluctance
 

motor [ J].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2024,
 

38(1):
 

124-133.
[10]　 SADROSSADAT

 

S
 

A,
 

RAHMANI
 

O.
 

ANN-based
 

method
 

for
 

parametric
 

modelling
 

and
 

optimizing
 

efficiency
 

output
 

power
 

and
 

material
 

cost
 

of
 

BLDC
 

motor[J].
 

IET
 

Electric
 

Power
 

Applications,
 

2020,
 

14(6):
 

951-960.
[11]　 DOI

 

S,
 

SASAKI
 

H,
 

IGARASHI
 

H.
 

Multi-objective
 

topology
 

optimization
 

of
 

rotating
 

machines
 

using
 

deep
 

learning[ J].
 

IEEE
 

Transactions
 

on
 

Magnetics,
 

2019,
 

55(6):
 

1-5.
[12]　 WANG

 

W
 

T,
 

ZHAO
 

J
 

W,
 

SONG
 

J
 

C,
 

et
 

al.
 

Thrust
 

performance
 

improvement
 

for
 

PMSLM
 

through
 

double-
layer

 

reverse
 

skewed
 

coil
 

and
 

WRF-MKH
 

method [ J].
 

IEEE
 

Transactions
 

on
 

Mechatronics,
 

2020,
 

25 ( 6 ):
 

2950-2960.
[13]　 刘艳丽,

 

王浩,
 

李佳原,
 

等.
 

基于多卷积和结构搜索

的电弧故障检测模型 [ J]. 电子测量与仪器学报,
 

2024,
 

38(4):
 

117-127.
LIU

 

Y
 

L,
 

WANG
 

H,
 

LI
 

J
 

Y,
 

et
 

al.
 

Arc
 

fault
 

detection
 

model
 

based
 

on
 

multi-convolution
 

and
 

structure
 

search[J].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2024,
 

38(4):
 

117-127.
[14]　 HUA

 

Y,
 

ZHU
 

H,
 

GAO
 

M,
 

et
 

al.
 

Multi-objective
 

optimization
 

design
 

of
 

permanent
 

magnet
 

assisted
 

bearingless
 

synchronous
 

reluctance
 

motor
 

using
 

NSGA-Ⅱ[ J].
 

IEEE
 

Transactions
 

on
 

Industrial
 

Electronics,
 

2021,
 

68 ( 11):
 

10477-10487.
[15]　 FARHADIAN

 

M,
 

MOALLEM
 

M,
 

FAHIMI
 

B.
 

Multimodal
 

optimization
 

algorithm
 

for
 

torque
 

ripple
 

reduction
 

in
 

synchronous
 

reluctance
 

motors [ J].
 

IEEE
 

Access,
 

2022,
 

10:
 

26628-26636.
[16]　 YAMASHITA

 

Y,
 

OKAMOTO
 

Y.
 

Design
 

optimization
 

of
 

synchronous
 

reluctance
 

motor
 

for
 

reducing
 

iron
 

loss
 

and
 

improving
 

torque
 

characteristics
 

using
 

topology
 

optimization
 

based
 

on
 

the
 

level-set
 

method[J].
 

IEEE
 

Transactions
 

on
 

Magnetics,
 

2020,
 

56(3):
 

1-4.
[17]　 沈建新,

 

蔡顺,
 

郝鹤.
 

同步磁阻电机分析与设计(连

载之二)基于磁路模型的解析分析方法[ J]. 微电机,
 

2016,
 

49(10):
 

80-83.
SHEN

 

J
 

X,
 

CAI
 

SH,
 

HAO
 

H.
 

Analysis
 

and
 

design
 

of
 

synchronous
 

reluctance
 

machine
 

part
 

VI:
 

Parameter
 

optimization
 

of
 

evenly
 

distributed
 

rotor
 

barriers [ J ].
 

Micromotors,
 

2016,
 

49(10):
 

80-83.
[18]　 刘钊,

 

孙洁娣,
 

温江涛.
 

基于多层面压缩深度神经网

络的轴承故障诊断[J].
 

电子测量与仪器学报,
 

2022,
 

36(7):
 

189-198.
LIU

 

ZH,
 

SUN
 

J
 

D,
 

WEN
 

J
 

T.
 

Bearing
 

fault
 

diagnosis
 

method
 

based
 

on
 

multi-dimension
 

compressed
 

deep
 

neural
 

network [ J ].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2022,
 

36(7):
 

189-198.
[19]　 彭菲桐,

 

徐凯,
 

吴仕勋,
 

等.
 

基于智能优化深度网络

的轨道电路故障诊断研究[ J].
 

电子测量与仪器学

报,
 

2024,
 

38(2):
 

219-230.
PENG

 

F
 

T,
 

XU
 

K,
 

WU
 

SH
 

X,
 

et
 

al.
 

Research
 

on
 

fault
 

diagnosis
 

of
 

track
 

circuit
 

based
 

on
 

intelligent
 

optimization
 

deep
 

network[J].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2024,
 

38(2):
 

219-230.
[20]　 徐萌,

 

周玉祥,
 

徐海,
 

等.
 

基于改进粒子群算法的开

关磁阻电机本体优化 [ J]. 电子测量与仪器学报,
 

2023,
 

37(4):
 

131-141.
XU

 

M,
 

ZHOU
 

Y
 

X,
 

XU
 

H,
 

et
 

al.
 

Ontology
 

optimization
 



·126　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 38 卷

of
 

switched
 

reluctance
 

motor
 

based
 

on
 

improved
 

particle
 

swarm
 

optimization
 

algorithm [ J].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2023,
 

37 ( 4 ):
 

131-141.
作者简介

　 　 王子贺,2019 年于济南大学获得学士

学位,现为山东理工大学控制工程硕士研究

生,主要研究方向为电机驱动控制。
E-mail:

 

wangzihe77@ 126. com
Wang

 

Zihe
 

received
 

his
 

B. Sc.
 

degree
 

from
 

University
 

of
 

Jinan
 

in
 

2019.
 

Now
 

he
 

is
 

a
 

M. Sc.
 

candidate
 

at
 

Shandong
 

University
 

of
 

Technology.
 

His
 

main
 

research
 

interest
 

includes
 

motor
 

drive
 

control.
李存贺(通信作者),2012 年于滨州学

院获得学士学位,2014 年于大连海事大学

获得硕士学位,2019 年于大连海事大学获

得博士学位,现为山东理工大学电气工程学

院讲师,主要研究方向为磁阻电机及功率变

换系统的设计与控制。
E-mail:

 

licunhe@ sdut. edu. cn
Li

 

Cunhe ( Corresponding
 

author )
 

received
 

his
 

B. Sc.
 

degree
 

from
 

Binzhou
 

University
 

in
 

2012,
 

M. Sc.
 

degree
 

from
 

Dalian
 

Maritime
 

University
 

in
 

2014
 

and
 

Ph. D.
 

degree
 

from
 

Dalian
 

Maritime
 

University
 

in
 

2019,
 

respectively.
 

Now
 

he
 

is
 

a
 

lecturer
 

in
 

School
 

of
 

Electrical
 

and
 

Electronic
 

Engineering
 

of
 

Shandong
 

University
 

of
 

Technology.
 

His
 

main
 

research
 

interests
 

include
 

the
 

design
 

and
 

control
 

of
 

reluctance
 

motors
 

and
 

power
 

conversion
 

systems.
焦提操,2008 年于曲阜师范大学获得

学士学位,2012 年于曲阜师范大学获得硕

士学位,2016 年于南京理工大学获得博士

学位,现为山东理工大学电气工程学院教

授,主要研究方向为非线性随机系统控制理

论及机电、机械系统应用。

E-mail:
 

jiaoticao@ sdut. edu. cn
Jiao

 

Ticao
 

received
 

his
 

B. Sc.
 

degree
 

from
 

Qufu
 

Normal
 

University
 

in
 

2008,
 

M. Sc.
 

degree
 

from
 

Qufu
 

Normal
 

University
 

in
 

2012
 

and
 

Ph. D.
 

degree
 

from
 

Nanjing
 

University
 

of
 

Science
 

and
 

Technology
 

in
 

2016,
 

respectively.
 

Now
 

he
 

is
 

a
 

professor
 

in
 

School
 

of
 

Electrical
 

and
 

Electronic
 

Engineering
 

of
 

Shandong
 

University
 

of
 

Technology.
 

His
 

main
 

research
 

interests
 

include
 

the
 

nonlinear
 

stochastic
 

system
 

control
 

theory
 

and
 

electromechanical
 

and
 

mechanical
 

system
 

applications.
鲁炳林, 2011 年于中国石油大学 ( 华

东)获得学士学位,2018 年于山东大学获得

博士学位,现为山东理工大学电气工程学院

讲师,主要研究方向为高速永磁及特种磁阻

电机分析与设计。
E-mail:

 

lubinglin@ sdut. edu. cn
Lu

 

Binglin
 

received
 

his
 

B. Sc.
 

degree
 

from
 

China
 

University
 

of
 

Petroleum
 

(East
 

China)
 

in
 

2011
 

and
 

Ph. D.
 

degree
 

from
 

Shandong
 

University
 

in
 

2018,
 

respectively.
 

Now
 

he
 

is
 

a
 

lecturer
 

in
 

School
 

of
 

Electrical
 

and
 

Electronic
 

Engineering
 

of
 

Shandong
 

University
 

of
 

Technology.
 

His
 

main
 

research
 

interests
 

include
 

the
 

analysis
 

and
 

design
 

of
 

high-speed
 

permanent
 

magnet
 

and
 

special
 

reluctance
 

motors.
熊立新,1999 年于哈尔滨工业大学获

得学士学位,2006 年于山东大学获得硕士

学位,2009 年于山东大学获得博士学位,现
为山东理工大学电气工程学院教授,主要研

究方向为电力电子与电气传动。
E-mail:

 

xionglixin@ sdut. edu. cn
Xiong

 

Lixin
 

received
 

his
 

B. Sc.
 

degree
 

from
 

Harbin
 

Institute
 

of
 

Technology
 

in
 

1999, M. Sc.
 

degree
 

from
 

Shandong
 

University
 

in
 

2006,and
 

Ph. D.
 

degree
 

from
 

Shandong
 

University
 

in
 

2009,
 

respectively.
 

Now
 

he
 

is
 

a
 

professor
 

in
 

School
 

of
 

Electrical
 

and
 

Electronic
 

Engineering
 

of
 

Shandong
 

University
 

of
 

Technology.
 

His
 

main
 

research
 

interests
 

include
 

power
 

electronics
 

and
 

electric
 

drives.


