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基于 PSO-VMD 的永磁同步电机匝间短路振动信号
故障特征提取研究∗

夏焰坤　 王宛婷　 黄　 鹏

(西华大学电气与电子信息学院　 成都　 610039)

摘　 要:在永磁同步电机(PMSM)的故障类型中,匝间短路(ITSC)故障较为常见,准确提取其故障特征具有重要意义。 然而,在
故障特征提取时容易出现模态混叠现象。 为了准确提取出永磁同步电机( PMSM)出现匝间短路( ITSC)时振动信号的故障特

征,提出了一种基于粒子群优化变分模态分解(PSO-VMD)的自适应非线性信号处理方法。 首先,利用粒子群优化( PSO)寻找

变分模态分解(VMD)的最优分解层数与二次惩罚因子,得到最优分解模型。 其次,利用得到的最优分解模型对电机振动信号

进行分解,得到一系列固有模态函数(IMF)。 在此之后,计算分解得到的各 IMF 的方差贡献率( VCR),进一步计算累计方差贡

献率(C-VCR),以筛选出包含故障特征信息的 IMF。 最后,应用希尔伯特变换(HT)对筛选出的 IMF 进行分析,并以三维时频图

输出时间、瞬时频率与幅值,完成故障特征提取。 为了验证所提方法的有效性和准确性,搭建了 PMSM 的 ITSC 实验平台,使用

所提方法处理实测信号,结果表明,所提 PSO-VMD 方法有效改善了模态混叠现象,能更准确的提取故障特征,具有更好的工程

适用性。
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Abstract:
 

In
 

the
 

fault
 

types
 

of
 

permanent
 

magnet
 

synchronous
 

motors
 

( PMSM),
 

inter-turn
 

short
 

circuit
 

( ITSC)
 

faults
 

are
 

relatively
 

common,
 

making
 

the
 

accurate
 

extraction
 

of
 

fault
 

features
 

particularly
 

significant.
 

However,
 

during
 

fault
 

feature
 

extraction,
 

modal
 

mixing
 

often
 

occurs.
 

In
 

order
 

to
 

accurately
 

extract
 

the
 

fault
 

features
 

of
 

vibration
 

signals
 

in
 

permanent
 

magnet
 

synchronous
 

motor
 

(PMSM)
 

when
 

inter-turn
 

short
 

circuit
 

( ITSC)
 

occurs,
 

proposes
 

an
 

adaptive
 

nonlinear
 

signal
 

processing
 

method
 

based
 

on
 

particle
 

swarm
 

optimized
 

variational
 

mode
 

decomposition
 

( PSO-VMD).
 

Firstly,
 

particle
 

swarm
 

optimization
 

( PSO)
 

is
 

used
 

to
 

find
 

the
 

optimal
 

number
 

of
 

decomposition
 

layers
 

and
 

quadratic
 

penalty
 

factor
 

for
 

variational
 

modal
 

decomposition
 

(VMD)
 

to
 

obtain
 

the
 

optimal
 

decomposition
 

model.
 

Secondly,
 

the
 

optimal
 

decomposition
 

model
 

is
 

used
 

to
 

decompose
 

the
 

motor
 

vibration
 

signals
 

to
 

obtain
 

a
 

series
 

of
 

intrinsic
 

mode
 

functions
 

(IMF).
 

After
 

that,
 

the
 

variance
 

contribution
 

rate
 

(VCR)
 

of
 

each
 

IMF
 

is
 

calculated,
 

and
 

the
 

cumulative
 

variance
 

contribution
 

rate
 

(C-
VCR)

 

is
 

further
 

calculated
 

to
 

filter
 

out
 

the
 

IMF
 

that
 

contain
 

fault
 

signature
 

information.
 

Finally,
 

the
 

filtered
 

IMF
 

are
 

analyzed
 

by
 

applying
 

the
 

Hilbert
 

transform
 

(HT),
 

and
 

the
 

three-dimensional
 

time-frequency
 

diagrams
 

are
 

used
 

to
 

output
 

the
 

time,
 

the
 

instantaneous
 

frequency
 

and
 

the
 

amplitude
 

to
 

complete
 

the
 

fault
 

feature
 

extraction.
 

In
 

order
 

to
 

verify
 

the
 

validity
 

and
 

accuracy
 

of
 

the
 

proposed
 

method,
 

an
 

experimental
 

platform
 

of
 

the
 

ITSC
 

in
 

PMSM
 

was
 

built,
 

and
 

the
 

proposed
 

method
 

was
 

used
 

to
 

process
 

the
 

measured
 

signals.
 

The
 

experimental
 

results
 

show
 

that
 

the
 

proposed
 

PSO-VMD
 

method
 

effectively
 

improves
 

the
 

phenomenon
 

of
 

modal
 

mixing,
 

can
 

more
 

accurately
 

extract
 

fault
 

features,
 

and
 

has
 

better
 

engineering
 

applicability.
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0　 引　 言

　 　 永磁同步电机( permanent
 

magnet
 

synchronous
 

motor,
 

PMSM)的运行环境通常相对恶劣,恶劣的运行环境可能

会缩短它们的使用寿命。 由于绕组的绝缘老化或损坏、
绕组设计或制造缺陷等原因,绕组容易出现短路故障,其
中匝间短路( inter-turn

 

short
 

circuit,
 

ITSC) 故障最为常

见[1-5] 。 因此,研究相应的 PMSM 匝间短路故障特征提取

技术对于监测由 PMSM 构成的系统的稳定性和可靠性有

着不可替代的价值。
近年来,基于信号处理的故障特征提取技术能够充

分利用旋转机械产生的信号信息,实现对故障特征的快

速、准确提取[6-9] 。 此外,基于信号处理的电机故障特征

提取方法不需要对电机进行精确的数学建模,且运算量

小,自适应能力强[10-12] 。 文献[13]建立了匝间短路故障

动态数学模型,并使用功率谱密度分析定子电流信号,识
别出了电流信号中的故障特征谐波。 文献[14] 使用小

波包能量和改进希尔伯特变换提取了电机故障特征,但
其并未讨论噪声的干扰和在复杂操作条件下故障检测的

准确性。 文献[15] 采用改进的小波包算法对电机振动

信号和电流信号进行分析,提取出了各信号的主要故障

特征,通过特征融合增强了电机匝间短路故障检测的准

确性。 总的来说,上述故障特征提取技术均具有一定的

工程意义。
电气参数(电流、电压、阻抗等) 的变化直接反映了

电机内部的电气故障,可以直接识别故障,但是,其也有

不足,例如在故障早期阶段,匝间短路引起的电气参数变

化可能非常微小,容易被忽略或与其他电气干扰混淆。
而 PMSM 发生 ITSC 时,会导致振动强度产生一定变化,
这个变化通常较明显,并且由于电机振动信号便于测量,
基于振动信号的故障检测方法受到越来越多的关注。 因

此,可以对 PMSM 振动信号进行分析,提取其故障特征。
然而,PMSM 的振动信号表现出非平稳和非线性的特

性[16] 。 近年来,基于非线性动力学的信号处理方法在旋

转机械故障检测中得到了广泛应用。 文献[17] 将海马

优化算法引入到斜率熵的参数调整中,进而提出了一种

优化的多尺度斜率熵。 文献[18] 提出了一种改进的复

合多尺度散度熵,它对时间序列具有更好的信息提取能

力。 文献[19]提出了一种变步长多尺度单阈值斜率熵,
并将优化算法引入到斜率熵的阈值调整中。 值得注意的

是,合适的信号处理方法对准确提取故障特征起着十分

关键的作用。 作为非线性信号分析领域中一种重要的时

频分析工具,希尔伯特变换( Hilbert
 

transform,
 

HT) 能够

有效地将信号从时域转换至频域,并可以详细分析信号

在时间和频率上的变化。 此外,HT 具有多尺度、高分辨

率、高灵敏度等优点,被大量用于特征提取[20-22] 。 然而,
HT 对噪声很敏感,而且也有诸如端点效应等缺点。 因

此,利用 HT 直接分析振动信号所得到的故障特征往往

不太准确。
为了更好地分析信号,研究人员提出了希尔伯特黄

变换(Hilbert-Huang
 

transform,
 

HHT),它结合了经验模态

分解 ( empirical
 

mode
 

decomposition,
 

EMD ) 和 HT
 [23] 。

HHT 算法的核心是 EMD 算法,其可以自适应地分解信

号。 然而,EMD 算法不适用于分析频率成分含量较高的

信号,容易导致出现模态混叠[24] 。 后来,相关学者提出

了 集 合 经 验 模 态 分 解 ( ensemble
 

empirical
 

mode
 

decomposition,
 

EEMD )、 互 补 集 合 经 验 模 态 分 解

( complementary
 

ensemble
 

empirical
 

mode
 

decomposition,
 

CEEMD)、自适应噪声完全集合经验模态分解( complete
 

ensemble
 

empirical
 

mode
 

decomposition
 

with
 

adaptive
 

noise,
 

CEEMDAN)等算法[25-27] 。 这些算法通过在信号中添加

频率分布均匀且服从高斯分布的白噪声,使得信号具有

多个尺度上的连续性,有效地抑制了间歇性。 然而,这些

算法对固有模态函数( intrinsic
 

mode
 

function,
 

IMF)仅通

过有限次的总体平均来消除引入的高斯白噪声干扰,可
能会使干扰消除不完整,影响重构信号。 此外,信号极值

点的分布决定了这些算法的分解结果,模态混叠现象等

问题依然无法避免。
变分 模 态 分 解 ( variational

 

mode
 

decomposition,
 

VMD)也可用于把输入信号分解为多个 IMF[28] ,其在改

善 模 态 混 叠 方 面 优 于 局 部 均 值 分 解 ( local
 

mean
 

decomposition,
 

LMD)和递归的 EMD 等算法。 因此,从理

论上来说,使用 VMD 算法对电机振动信号进行分解得到

的 IMF 更适用于 HT。 然而,VMD 算法用于分解信号时,
分解模态数和二次惩罚因子的合理设置是十分重要的。
为了解决上述问题,研究人员使用了各种优化算法,如鲸

鱼优化算法、麻雀搜索算法、微分搜索算法等算法[29-31] 。
一般情况下,这些算法可以找到 VMD 算法的最优参数组

合,但是这些优化算法很容易陷入局部最优,且这些算法

的运行时间较长。 总之,这些算法在实际工程应用中受

到一部分限制。
VMD 算法对信号进行分解的有效性主要取决于所

得到的结果中是否存在模态混叠或过分解现象。 其分解

模型参数组合与解的精度之间的关系不能用一个具体的

表达式来描述。 因此,获得最优参数组合的方法是遍历

所有的离散变量值,将几乎不存在模态混叠和过分解时

的参数组合作为最优参数组合。 粒子群优化算法

(particle
 

swarm
 

optimization,
 

PSO)拥有强大的全局搜索

能力,可以有效避免解陷入局部最优,被广泛应用在深度

学习超参数调优中[32] 。 因此,本研究采用 PSO 算法寻找

VMD 算法的最优分解模态数和二次惩罚因子,进一步克
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服 VMD 算法的参数选取问题。
本研究提出了一种基于粒子群优化变分模态分解

(PSO-VMD)的自适应非线性信号处理方法,并将其应用

于 PMSM 中 ITSC 振动信号故障特征提取。 首先,采用

PSO 算法来获得 VMD 算法的最优参数组合。 接下来,利
用该参数组合结合 VMD 算法对 PMSM 的振动信号进行

分解,得到 IMFs。 在此之后,对分解得到的各个 IMF 计

算其方差贡献率( variance
 

contribution
 

rate,
 

VCR),再计

算累积方差贡献率( cumulative
 

variance
 

contribution
 

rate,
 

C-VCR),以筛选出含有故障特征信息的 IMF。 最后,应
用 HT 分析筛选出来的 IMF,并使用三维时频图输出时

间、瞬时频率与幅值,完成 PMSM 中 ITSC 振动信号的故

障特征提取。

1　 基本原理

1. 1　 VMD 算法

　 　 VMD 是一种将输入信号 f( t) 分解为一系列 IMFs 的

信号分解算法[28] 。 这些函数也被描述为调幅调频( AM-
FM)信号,表示为:

uk( t) = Ak( t)cosϕk( t) (1)
式中: Ak( t) 是信号 uk( t) 的包络幅值, ϕk( t) 是信号

uk( t) 的非单调递减相位函数。
假设实值输入信号为 f( t),uk( t) 为分解得到的模

态,各模态包含的频率分量均在中心频率 ωk 附近。 对模

态函数进行希尔伯特函数变换,得到对应的单边频谱。
进一步求得相关解析信号为:

δ( t) + j
πt( ) ∗uk( t) (2)

式中: δ( t) 为单位脉冲函数, ∗ 表示卷积。

将解析信号乘以 e
-jwkt,得到基带信号 Sk( t) ,其表达

式为:

Sk( t) = δ( t) + j
πt( ) ∗uk( t)

é

ë
êê

ù

û
úú e

-jωkt (3)

在此之后,计算该基带信号梯度的 L2 范数,从而得

到各个分量的带宽, 相应的约束变分模型表达式如

式(4)所示。

min
{uk},{ωk}

∑
K

k = 1
‖∂t[Sk( t)]‖2

2{ }

s. t. ∑
K

k = 1
uk( t) = f( t)

ì

î

í

ï
ï

ï
ï

(4)

式中: K 表示模态数量, {uk} 表示子分量, {ωk} 表示中

心频率。
通过引入二次惩罚因子及拉格朗日算法乘子,把原

本的约束变分模型转化为非约束变分模型,得到增广拉

格朗日函数表达式如式(5)所示。

L({uk},{ωk},λ) = α∑
K

k = 1
‖∂t[Sk( t)]‖2

2 +

‖f( t) - ∑
K

k = 1
uk( t)‖2

2 + 〈λ( t),f( t) - ∑
K

k = 1
uk( t)〉 (5)

式中: α 为二次惩罚因子, λ 为拉格朗日算法乘子。
对式(5)使用交替方向乘子法和 Parseval 定理优化

求解, uk( t)、ωk、λ 的更新公式如式(6) ~ (8)所示。

ûn+1
k (ω) =

f̂ (ω) - ∑
i≠k

ûn
i (ω) + λ̂n(ω)

2
1 + 2α(ω - ωn

k)
2 (6)

ωn+1
k =

∫∞

0
ω ûn

k(ω) 2dω

∫∞

0
ûnk(ω) 2dω

(7)

λn+1(ω) = λn(ω) + f(ω) - ∑
K

k = 1
un+1
k (ω)( ) (8)

式中: ûn+1
k (ω)、 f̂ (ω)、 ûn

i (ω)、 λ̂n(ω) 分别为 un+1
k ( t)、

f( t)、un
i ( t)、λn( t) 的傅里叶变换; n 为迭代次数, 为 λ

的时间步长。 ADMM 算法的收敛条件为:

∑
K

k = 1

‖un+1
k (ω) - un

k(ω)‖2
2

‖un
k(ω)‖2

2

< ε (9)

式中: ε 为收敛参数,一般取 1×10-7。
1. 2　 PSO 算法

　 　 PSO 算法作为一种群体智能优化算法,其核心原理

是模拟鸟类在觅食时展现出来的群体协作行为。 PSO 算

法的初始化阶段会随机产生一群粒子,它们代表了给定

问题的潜在解。 为了促使整个种群逐渐趋向于适应度最

佳的位置,各粒子间通过信息交换而相互影响[33] 。 粒子

群优化算法以适应度函数值作为判别标准,每个粒子都

有自己的位置和速度,代表给定问题的一种可能解。 粒

子个体最优解 Pbest 和全局最优解 Gbest 在每一次迭代中

都得到了更新。 在每一次迭代中,粒子都会为了追踪当

前最优的粒子获得对应的两个适应值,而在空间中进行

搜索和移动。 在此过程中,粒子的速度和位置会根据式

(10)和(11)进行更新:
υk+1
i = ωυk

i + c1r1(p
k
i - xk

i ) + c2r2(p
k
g - xk-1

g ) (10)
xk+1
i = xk

i + υk+1
i (11)

式中: ω为惯性权重,是一个常数; c1 为个体学习因子, c2

为社会学习因子; r1 和 r2 为[0,1]范围内的随机数。 xk
i 是

第 k次迭代中粒子 i的位置, υk
i 是第 k次迭代中粒子 i的速

度, pk
i 是第 k次迭代中第 i 个粒子当前搜索到的最优位置,

pk
g 第 k 次迭代中整个粒子群 g 当前搜索到的最优位置。

1. 3　 自适应参数选取 VMD
　 　 由前述 VMD 算法理论可知,设置不同的惩罚因子 α
和分解模态数 k 将会影响 VMD 算法的求解效果。 目前,
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大多数情况下, k 和 α 这两个参数的选择取决于数据处

理人员的经验。 为了减少对人工经验的依赖,本研究提

出使用 PSO 算法寻找 VMD 算法的最优参数组合 [k,
α] ,并进一步提出自适应参数选取变分模态分解。 值得

注意的是,PSO 算法寻找 VMD 算法的最优参数组合时,
设置合适的适应度函数对于优化效果具有极其重要的影

响。 对此进行以下分析:
在信号分析领域内,包络熵用于反应信号的稀疏性,

若信号包含的信息量很多,则信号的稀疏性很强,包络熵

值就很小;反之,若信号包含的信息量很少,则信号的稀

疏性很弱,包络熵值很大[34] 。 包络熵 Ep 通过式( 12)
计算:

Z i(n) = u i(n) 2 + u~ i(n) 2

p i = Z i(n) / ∑
N

i = 1
Z i(n)

Ep =- ∑
N

i = 1
p i logp i

ì

î

í

ï
ï
ïï

ï
ï
ï

(12)

式中: Z i(n) 是对解析信号进行希尔伯特解调得到的包

络信号序列; u i(n) 是电机振动信号经 VMD 分解得到的

第 i 个 IMF; u~ i(n) 经 Hilbert 函数变换后得到的解析信

号; p i 是包络信号序列 Z i(n) 的概率分布; N为信号采样

点的总数。 计算概率分布 p i 的熵值即为包络熵 Ep。
PMSM 出现匝间短路故障后,其振动信号相较于正

常状态下的振动信号包含更多的冲击分量,表现出冲击

特性。 峭度对冲击特性十分敏感,它的数值越大,信号的

冲击现象就越明显[35] 。 此外,在实际工程应用中,仅仅

使用包络熵作为 PSO 的适应度函数容易导致 VMD 算法

出现过分解现象,使分解后得到的模态为简谐波[35] 。 因

此,本研究引入峭度来进一步改善信号的过分解现象。
峭度的计算公式如式(13)所示。

Ku = 1
N ∑

N

n = 1
u(n) 4 (13)

综上所述,为了更好地描述 PMSM 振动信号的特性,
同时改善信号出现过分解现象,本研究结合包络熵和峭

度各自的优点, 提出粒子群优化算法的适应度函数

EvaF 为:
EvaF = 1 / Ku + 0. 1 × Ep (14)
最后,使用粒子群优化算法寻找 VMD 算法的最优参

数组合问题可以转化为对式(15)进行求解:
x∗ = argminEvaF(x),x ∈ X (15)

式中: x 表示一组参数组合 [k,α] ; X 为参数组合空间;
x∗ 为使适应度函数取得最小值的 X 中的一组 x 。
1. 4　 PMSM 匝间短路振动信号故障特征提取方式

　 　 本研究将所提 PSO-VMD 自适应信号处理方法结合

HT,并将其应用于 PMSM 中 ITSC 振动信号故障特征

提取。
假设输入振动信号是 U( t) ,使用 PSO 算法寻找到

的最优 [k,α] 参数组合结合 VMD 算法对 U( t) 进行分

解得到 k 个 IMF,记为 u i( t),i = 1,2,···,k 。 在此之后,
计算每个 IMF 的 VCR,记为 Contri ,其表达式为:

Contri = D[u i( t)] / ∑
k

i = 1
D[u i( t)]{ } × 100% (16)

式中:D[·]表示 u i( t) 的方差。
然后,将各个 VCR 按照从大到小的顺序排序。 对于

排序后的前 j 个方差贡献率,将其累加得到 C-VCR,记为

Cvcr j ,其表达式为:

Cvcr j = ∑
j

i = 1
Contr( i) (17)

式中: j = 1,2,…,l( l ≤ k)。 最后,设定一个阈值 CL ,当
计算得到的 C-VCR 满足式(18)时,可以筛选出 l 个包含

主要故障特征信息的 IMF,即为 VCR 按照从大到小的顺

序排序后的前 l 个 IMF。
Cvcr j ≥ CL (18)
假设 η( t) 是由 C-VCR 筛选出来的包含故障特征信

息的 IMF:

η̂( t) = H[η( t)] = 1
π ∫+∞

-∞

η( )
t -

d (19)

式中: H[·] 表示对 η( t) 进行希尔伯特函数变换。

然后,构建解析信号 η􀮨( t) :

η􀮨( t) = η( t) + jη̂( t) = a( t)e jϕ( t) (20)

a( t) = η2( t) +η̂2( t)

ϕ( t) = arctan
η̂( t)
η( t)

é

ë
êê

ù

û
úú

ì

î

í

ï
ï

ïï

(21)

式中:j = -1 。
进一步得到信号的瞬时频率函数 f( t) 为:

f( t) = 1
2π

ω( t) = 1
2π

dϕ( t)
dt

(22)

式中: ω( t) 为瞬时角频率。 于是瞬时频率随时间分布的

希尔伯特谱可被表示为:

H(ω,t) = Re[a( t)e
j∫ω( t)dt

] (23)
最后,定义 E(ω,t) 为信号能量在频率、时间平面上

的分布,进而给出三维时频图的定义:

E(ω,t) = {Re[a( t)e
j∫ω( t)dt

]} 2 (24)
将 PSO-VMD 方法结合 HT 应用于提取 PMSM 的

ITSC 振动信号故障特征,实现流程如图 1 所示。

2　 实验与结果分析

2. 1　 实验平台搭建

　 　 本研究进行实验验证基于 PSO-VMD 应用于 PMSM
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图 1　 振动信号故障特征提取流程

Fig. 1　 Vibration
 

signal
 

fault
 

feature
 

extraction
 

process

的 ITSC 振动信号故障特征提取的有效性,实验平台由计

算机、PMSM、三相电源、振动传感器和数据采集器组成,
如图 2 所示[36] 。 表 1 给出了 PMSM 的主要参数。 在实

验平台中,采用了型号为 INV9822 的压电式加速度传感

器作为振动传感器。 该传感器的主要参数如下:量程为

50
 

g,电压灵敏度为 100
 

mV / g,5%以下的最大横向灵敏

度,频率响应范围为 0. 5 ~ 8
 

kHz; 此外, 采用型号为

QuantumX
 

MX1601B 的测量放大器作为数据采集器,其
测量精度高达 0. 03%。 在实验中,振动传感器探测电机

运行中的振动情况并采集电机振动数据输入计算机,而
数据采集器用于记录振动传感器捕获的数据,同时为振

动传感器供电。
表 1　 实验电机基本参数

Table
 

1　 Basic
 

parameters
 

of
 

experimental
 

motor

参数 值

额定功率 / W 90
频率 / Hz 50

额定电压 / V 220
额定转速 / rpm 1

 

500
额定电流 / A 0. 35

　 　 在本实验中,信号采样频率为 1
 

200
 

Hz。 电机进入

稳态之后,通过振动传感器和数据采集器进行振动信号

的数据采集。 然后,人为地设置定子绕组匝间短路,即:
在匝间引出线来连接开关,将开关闭合即出现匝间短路

故障。 最后, 在 MATLAB 中分析采集到的振动信号

数据。
2. 2　 实验振动信号分析

　 　 为验证基于 PSO-VMD 的 PMSM 匝间短路振动信号

图 2　 电机短路故障实验平台

Fig. 2　 Motor
 

short-circuit
 

fault
 

experimental
 

platform

故障特征提取方法的有效性,本节使用 MATLAB 对实验

所采集到的电机振动信号进行分析,并与 WPT、EEMD、
CEEMD 和 CEEMDAN 算法做对比。 实验采集到的振动

信号如图 3 所示。

图 3　 实测振动信号

Fig. 3　 Measured
 

vibration
 

signal

首先,为了观察电机故障前后振动信号中产生的频

率变化,使用 FFT 分别分析故障发生前 0 ~ 5
 

s 和故障发

生后 15 ~ 20
 

s 内的振动信号。 图 4 为故障前 0 ~ 5
 

s 和故

障后 15 ~ 20
 

s 内的振动信号,图 5 为对应于两个信号经

FFT 后得到的频谱图。 分析图 5 可知,电机故障后,振动

信号中 100、200、300
 

Hz 等偶数次基频的幅值增大,其中

100、200
 

Hz 频率幅值增大最明显,为电机故障后振动信

号中出现的主要频率。 此 FFT 结果表明,2 倍旋转频率
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与 4 倍旋转频率是电机振动信号中的主要故障特征频

率。 使用 PSO-VMD 方法分析故障后 15 ~ 20
 

s 内的实测

振动信号。 首先,使用 PSO 算法来寻找 VMD 算法的最

优参数组合 [k,α]。 需要注意的是,在这个过程中需要

先指定 k 和 α 的初始寻优区间。 从前述 VMD 算法的理

论可知,分解模态数 k 和信号特性有关,如频率特性、复
杂度、噪声水平等,其决定 VMD 分解的复杂程度;而二次

惩罚因子 α 用于平衡信号的光滑性和稀疏性。

图 4　 0~ 5
 

s 和 15~ 20
 

s 内的振动信号

Fig. 4　 Vibration
 

signals
 

within
 

0~ 5
 

s
 

and
 

15~ 20
 

s

综合参考文献和实验经验,本研究提出了以下确定

k 和 α 寻优区间的方法:
1)为了确定分解模态数 k 的寻优区间,首先,使用

EMD 分解算法对信号进行分解,记录得到 IMF 的数目为

k0,这个数目提供了信号的大致分解模态数。 然后确定 k
的优化区间为 [k0 / 2,2k0] , 以更好的适应信号的复

杂性。
2)将二次惩罚因子 α 的优化区间设置为 [ f0,10f0] ,

这个范围保证了 α 在信号的基本频率(奈奎斯特频率)
和其 10 倍之间,这样的范围通常能够覆盖大多数信号的

频率特性。
基于上述分析,首先使用 EMD 算法分解振动信号,

得到 8 个 IMF,所以设置分解模态数 k 的寻优区间为[4,
16];由于本实验振动信号的采样频率为 1

 

200
 

Hz,所以

设置二次惩罚因子 α的寻优区间为[600,6
 

000]。 进行 3
次独立重复实验,每次实验所设置的种群数量和最大迭

代次数如表 2 所示。 3 次独立重复迭代实验的 PSO 收敛

曲线如图 6 所示,由图 6 可知,在 3 次独立重复迭代实验

的测试中, 评价函数最小值均收敛到同一数值, 为

图 5　 实验测得的振动信号频谱图

Fig. 5　 Spectrum
 

diagram
 

of
 

vibration
 

signal
measured

 

by
 

experiment

1. 183,这证明了本研究提出的 PSO-VMD 方法的稳定性。

图 6　 PSO 优化的收敛曲线

Fig. 6　 Convergence
 

curve
 

for
 

PSO
 

optimization
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表 2　 PSO 算法参数设置

Table
 

2　 PSO
 

algorithm
 

parameter
 

setting
实验标号 最大迭代次数 种群数

1 80 30
2 90 30
3 100 30

　 　 3 次独立重复实验得到的 [k,α] 组合如表 3 所示,
将 3 次试验的结果平均以获得最终最优参数组合,即:

PSO 优化得到的最优参数组合为[11,956]。 将此参数

组合应用到 VMD,对图 4(b)所示的 15 ~ 20
 

s 的故障后振

动信号进行分解,分解得到的 11 个 IMF 分量和每个 IMF
分量相应的频谱图在图 7 中给出。 从图 7 可以看出,分
解结果中几乎没有出现频率混叠现象,可以很好的将主

要故障特征频率分离出来(100 和 200
 

Hz),初步验证了

所提方法在 PMSM 匝间短路故障特征提取的有效性,具
有一定的工程指导意义。

图 7　 故障后 15~ 20
 

s 振动信号的 PSO-VMD 分解结果

Fig. 7　 PSO-VMD
 

decomposition
 

results
 

of
 

15
 

to
 

20
seconds

 

of
 

vibration
 

signals
 

after
 

the
 

fault

表 3　 PSO 算法优化结果

Table
 

3　 Optimization
 

results
 

of
 

PSO
 

algorithm
实验标号 分解模态数 惩罚因子

1 11 955
2 11 957
3 11 955

　 　 此后,计算各 IMF 的方差和 VCR 如图 8 所示。 由图

8 的计算结果可以进一步得到 C-VCR,结果如图 9 所示。

本设计中设定 C-VCR 的阈值为 90%,即选取 C-VCR 达

到 90%的前几个 IMF。 由图 9 可知,IMF 的个数为 2 时

就可以满足 90%的 C-VCR 的要求,所以,从 C-VCR 的角

度出发,结合图 8 所示的 VCR 结果可以筛选出主要包含

故障特征频率的 IMF 分量是 IMF7 和 IMF9。
因此,使用 HT 对 IMF7 和 IMF9 进行分析并使用三

维时频图进行结果展示,得到图 10 所示结果。 由图 10
可以清楚的看到,IMF7 中主要为 200

 

Hz 的频率,IMF9 中
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图 8　 各 IMF 的方差和方差贡献率计算结果

Fig. 8　 Calculation
 

results
 

of
 

variance
 

and
 

VCR
 

of
 

each
 

IMF

图 9　 累计方差贡献率计算结果

Fig. 9　 Calculation
 

result
 

of
 

C-VCR

主要为 100
 

Hz 的频率,100 和 200
 

Hz 在故障发生前几乎

没有或者很小,而故障发生后一直存在且幅值相对较高。
此外,设置两组不同的 [k,α] 参数组合进行对比,

第 1 组为[11,600],第 2 组为[6,956],使用这两组参数

结合 VMD 算法分别对 15 ~ 20
 

s 的实测振动信号进行分

解,再通过 HT 对主要包含故障特征频率的 IMF 进行分

析,获得的三维时频图如图 11 所示。 由图 11 可知,在这

两组参数下的 VMD 分解结果中均存在不可避免的模态

混叠现象,影响故障特征频率的分离,而 PSO 算法得到

的最优参数组合下的 VMD 分解结果中几乎不存在这一

问题。 这个结果表明,参数组合 [k,α] 的不合理设置会

影响 PMSM 中 ITSC 故障特征提取的准确性。 此外,这也

说明了优化 VMD 算法的必要性。
为了进一步验证 PSO-VMD 用于 PMSM 中 ITSC 振动

信号故障特征提取的有效性,分别采用 WPT、 EEMD、
CEEMD 和 CEEMDAN 结合 HT 分析 15 ~ 20

 

s 的实测振动

信号。
在 WPT 中,经验性地应用 db8 作为母小波,并且分

解层数设置为 3, 得到 8 个小波包系数; 而 EEMD,
CEEMD,CEEMDAN 分解结果受参数的影响,本研究设置

高斯白噪声标准差和加入噪声的次数分别为 0. 2 和 50;
CEEMDAN 高斯白噪声标准差设置为 0. 2,加入噪声的次

数设置为 50,最大迭代次数设置为 2
 

000[37] 。 算法分解

后,EEMD 和 CEEMD 得到 14 个 IMF,CEEMDAN 得到 16
个 IMF。 再由 VCR 和 C-VCR 筛选出故障特征频率分量,
最后,再用 HT 分析,得到的结果如图 12 所示。 由图 12 可

知,WPT、EEMD、CEEMD 和 CEEMDAN 算法分别与 HT 结

合都能检测 PMSM 中的 ITSC。 然而,三维时频图显示,100
和 200

 

Hz 的故障特征频率几乎被其他频率所淹没。 同时,
在三维时频图中也出现了一定的模态混叠现象。

图 10　 PSO-VMD 得到的三维时频图

Fig. 10　 3D
 

time-frequency
 

diagrams
 

obtained
 

by
 

PSO-VMD

　 　 对比图 10、11 和 12,可以看出,PSO-VMD 方法结合

HT 可以更有效地提取 PMSM 中的 ITSC 故障特征。 并

且,该方法具有较好的噪声鲁棒性,具有较好的工程指导

意义。
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图 11　 不同参数组合下 VMD 算法结合 HT 得到的三维时频图

Fig. 11　 3D
 

time-frequency
 

diagrams
 

obtained
 

from
 

the
 

VMD
 

algorithm
 

combined
 

with
 

HT
 

under
 

different
 

parameter
 

combinations

图 12　 WPT、EEMD、CEEMD 和 CEEMDAN 分别结合 HT 得到的三维时频图

Fig. 12　 3D
 

time-frequency
 

diagrams
 

obtained
 

by
 

WPT,
 

EEMD,
 

CEEMD
 

and
 

CEEMDAN
 

combined
 

with
 

HT
 

respectively

3　 结　 论

　 　 针对 PMSM 匝间短路振动信号故障特征提取研究,
本文提出一种 PSO-VMD 非线性信号分析方法。 利用

PSO 寻找得到的 VMD 最优分解层数与二次惩罚因子对

振动信号进行分解,再以 C-VCR 为依据筛选出包含故障

特征信息的 IMF,最后应用 HT 对筛选出的 IMF 进行

分析。
为了验证所提方法的有效性与准确性,搭建了实验

平台,实验结果表明,故障后振动信号中主要出现幅值较

高的 2 倍旋转频率与 4 倍旋转频率,可为未来的故障诊

断和分类提供基础。 并且,与 WPT、 EEMD、 CEEMD 和

CEEMDAN 算法相比,PSO-VMD 算法能够更好地自适应

分解信号,提高了故障特征提取的准确性。 同时,C-VCR
在筛选故障特征分量方面表现良好。 此外,使用三维联

合时频图输出时间、瞬时频率与幅值,可以进一步地提高

故障特征的表达能力。
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