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应用 SRR / CSRR 去耦的毫米波 MIMO 天线∗

南敬昌　 苏东蕊　 高明明　 王艺扉

(辽宁工程技术大学电子与信息工程学院　 葫芦岛　 125105)

摘　 要:根据目前无线通信系统的发展趋势,为了大幅度地提高通信效率,针对 Ka 波段,设计了一款基于开口谐振环和互补开

口谐振环的低耦合多输入多输出天线。 天线整体尺寸为 40
 

mm×25
 

mm×1. 2
 

mm。 首先,该天线正面由带有空心圆的椭圆形辐

射贴片、梯形微带馈线及开口谐振环组成,保证天线工作在 Ka 波段(26~ 40
 

GHz)。 其次,该天线背面为刻蚀互补开口谐振环结

构的矩形接地板,可以有效地达到去耦的目的,从而实现低耦合的效果。 仿真与实测结果表明:工作带宽为 26~ 40
 

GHz(相对带

宽达到 50%),回波损耗小于-10
 

dB,耦合度均小于-26
 

dB,包络相关系数小于 0. 001,辐射方向图良好,增益稳定,辐射效率较

高。 由此,所设计的天线不仅结构简单、尺寸紧凑、频率覆盖范围广,且各项性能占优,可广泛应用于 5G 毫米波相关领域。 综

上,应用 SRR / CSRR 的技术使毫米波 MIMO 天线的互耦度得到了降低,验证了 SRR / CSRR 技术作为一种新型去耦技术的可行

性和有效性。
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Abstract:
 

According
 

to
 

the
 

current
 

development
 

trend
 

of
 

wireless
 

communication
 

systems,
 

in
 

order
 

to
 

significantly
 

improve
 

the
 

efficiency
 

of
 

communications.
 

a
 

low
 

coupling
 

multiple-input
 

multiple-output
 

antenna
 

based
 

on
 

split
 

ring
 

resonator
 

and
 

complementary
 

split
 

ring
 

resonator
 

is
 

designed
 

for
 

Ka-band.
 

The
 

overall
 

dimensions
 

of
 

the
 

antenna
 

are
 

40
 

mm × 25
 

mm × 1. 2
 

mm.
 

First,
 

the
 

front
 

side
 

of
 

the
 

antenna
 

consists
 

of
 

an
 

elliptical
 

radiating
 

patch
 

with
 

a
 

hollow
 

circle,
 

trapezoidal
 

microstrip
 

feedline
 

and
 

split
 

ring
 

resonator,
 

to
 

ensure
 

that
 

the
 

antenna
 

operates
 

in
 

the
 

Ka-band(26~ 40
 

GHz).
 

Second,
 

on
 

the
 

back
 

is
 

a
 

rectangular
 

ground
 

plate
 

with
 

a
 

complementary
 

split
 

ring
 

resonator,
 

which
 

can
 

effectively
 

achieve
 

the
 

purpose
 

of
 

decoupling.
 

Thus
 

realizing
 

the
 

effect
 

of
 

low
 

coupling.
 

Simulated
 

and
 

measured
 

results
 

show
 

that,
 

operating
 

bandwidth
 

of
 

26~ 40
 

GHz(the
 

relative
 

bandwidth
 

of
 

50%),
 

return
 

loss
 

less
 

than
 

-10
 

dB,
 

coupling
 

less
 

than
 

- 26
 

dB,
 

envelope
 

correlation
 

coefficient
 

is
 

less
 

than
 

0. 001,
 

good
 

radiation
 

directional
 

map,
 

stable
 

gain,
 

high
 

radiation
 

efficiency.
 

As
 

a
 

result,
 

the
 

designed
 

antenna
 

not
 

only
 

has
 

a
 

simple
 

structure,
 

compact
 

size
 

and
 

wide
 

frequency
 

coverage,
 

but
 

also
 

has
 

superior
 

performance.
 

it
 

can
 

be
 

widely
 

used
 

in
 

5G
 

millimeter-wave
 

related
 

areas.
 

In
 

summary,
 

the
 

application
 

of
 

SRR / CSRR
 

has
 

led
 

to
 

the
 

reduction
 

of
 

the
 

mutual
 

coupling
 

of
 

millimeter-wave
 

MIMO
 

antenna,
 

the
 

feasibility
 

and
 

effectiveness
 

of
 

the
 

SRR / CSRR
 

technique
 

as
 

a
 

novel
 

decoupling
 

technique
 

are
 

verified.
Keywords:SRR;

 

CSRR;
 

high
 

isolation;
 

millimeter
 

wave;
 

MIMO
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0　 引　 言

　 　 随着无线技术的发展,人类社会全面进入了信息化

时代。 第四代(4G)技术已经被用于满足高数据速率的

要求,但是其不满足于不断增加的用户数量的需求。 这

种需求促使无线技术转向第五代(5G)无线通信和毫米

波(millimeter-wave) 频谱[1] 。 由于当前频谱已经过度拥

堵,因此提出在毫米波频段范围内的多输入多输出

(multiple-input
 

multiple-output,MIMO)天线来提高数据速

率和增大系统的容量[2-4] 。
尽管大部分毫米波频谱(30 ~ 300

 

GHz)相对未使用,
但相对较低的频段优先用于通信,因此,许多学者设计出

低耦合的 MIMO 天线[5] 。 文献 [ 6] 采用缺陷地结构

(defected
 

ground
 

structure,DGS)去耦,使得 MIMO 天线间

的相关性降低。 文献[7]用加载“T”形去耦枝节,来满足

隔离度小于 - 15
 

dB 要求。 文献 [ 8 ] 采用电磁带隙

(electromag
 

netic
 

band
 

gap,EBG)结构,来解除耦合问题。
虽然上述 MIMO 天线性能良好,但是去耦设计方法并不

适合在高频部分。
对于此现象,提出了一种应用 SRR / CSRR 去耦的毫

米波 MIMO 天线。 通过将椭圆形辐射贴片空心化后,与
梯形 微 带 馈 线 相 连, 并 加 载 开 口 谐 振 环 ( split-ring

 

resonator,SRR)结构,使天线工作在 Ka 波段[9] 。 在接地

板正中间刻蚀一个互补开口谐振环( complementary
 

split-
ring

 

resonator,CSRR)结构,用于去耦结构设计[10] 。 天线

整体尺寸为 40 mm × 25 mm × 1. 2 mm, 匹配带宽 26 ~
40

 

GHz,隔离度小于-26
 

dB。

1　 MIMO 天线结构设计与分析

1. 1　 MIMO 天线设计

　 　 设计的天线为 40 mm×25 mm,并选用 50
 

Ω 微带馈线

来进行馈电。 该天线是印刷在 FR4 介质基板上,其厚度

设定为 1. 2 mm。 天线单元改进过程如图 1 所示。 开始,
选用椭圆形作为辐射贴片,通过改变天线表面电流的路

径来拓宽天线的工作带宽,进而将天线的辐射贴片进行

空心处理;接着,将矩形微带馈线变为梯形微带馈线。 将

单极子对称放置后在中间加载 SRR 结构。 此时得到的

天线仅为毫米波 MIMO 天线。
天线单元改进过程中 S11 的变化如图 2 所示。 由图

2 可知,天线 1 在 Ka 频段中对应的 S11 高于-10
 

dB,不符

合天线的设计。 接着对贴片进行空心化处理得到天线

2,空心的实质是改变了电路的流经路径,进而改变了阻

抗特性,使 S11 有所降低,但还是存在阻抗失配。 为了更

好的提高天线的性能,通过改变微带馈线形状,将矩形馈

图 1　 天线单元改进过程结构

Fig. 1　 Antenna
 

element
 

improvement
 

process

线变为梯形馈线,这样得到了单极子天线 3,只是在

28
 

GHz 及以下存在失配现象。 再将其平行放置,形成二

单元 MIMO 天线,并在中间添加 SRR 结构,得到天线 4。
S11 在整个工作频段内低于-10

 

dB。

图 2　 贴片改进过程中 S11 变化图

Fig. 2　 Variation
 

diagram
 

of
 

S11
 during

 

patch
 

improvement

1)SRR 结构

SRR 的基本结构是由两个半径不相等、缝隙相等的

同心反向开口圆环组成[11] 。 SRR 结构如图 3( a) 所示,
红色部分表示辐射贴片。

当有平行于 SRR 所在平面的外部磁场施加时,磁场

的动态变化能够诱导金属环内产生感应电流,这一过程

伴随着电流在环中循环流动,进而形成显著的等效电感

效应。 同时,由于电荷在金属环两端的非连续处(缺口)
自然累积,形成了一个类似电容器的结构,即等效电容。
而电容和电感一起便形成了闭合电路,激发出谐振现

象[12-13] 。 因此,SRR 可以有效地通过 LC 谐振电路模型

来等效表示与理论分析,从而简化了对其特性的研究与

理解。 其等效 LC 串联谐振电路如图 3(b)所示。
其中, C0 代表两个环路之间的总电容,可以用式(1)

表示为:
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图 3　 SRR 结构与等效 LC 谐振电路

Fig. 3　 Structure
 

and
 

equivalent
 

LC
 

resonant
 

circuit
 

of
 

SRR

C0 = 2πdmCpul (1)
式中: dm 是 两 个 环 之 间 的 平 均 长 度, dm 的 值 为

0. 75
 

mm, Cpul 是环之间的每单位长度的电容。
SRR 环的串联电容和电感由式(2)可得:
Cs = C0 / 4 (2)
并且具有长度 d的单个环的电感可以用于估计 Ls。
SRR 的共振频率由式(3)确定可得:

f0 = 1
2ϕ LsCs

(3)

式中: Ls 为 SRR 总电感, Cs 为 SRR 总电容。
1. 2　 MIMO 天线结构分析

　 　 此时的天线仅符合毫米波频段,并不符合 MIMO 天

线低耦合的要求。 为了得到较低的耦合,在接地板上刻

蚀 CSRR 结构。 MIMO 天线结构图如图 4 所示。
经 HFSS 仿真软件的细致优化后,天线结构的参数

得到了精确的调整,最终确定的参数如表 1 所示。

表 1　 天线结构尺寸

Table
 

1　 The
 

dimensions
 

of
 

antenna
 

structure (mm)
参数 数值 参数 数值

L 40. 0 W 25. 0
L1 3. 6 W1 9. 0
R 2. 3 a 0. 5

R1 2. 5 R3 3. 5
R2 3. 0 R4 4. 0

2　 去耦结构设计与分析

2. 1　 去耦结构设计

　 　 MIMO 天线虽然满足 Ka 频段带宽要求,但天线单元

间的耦合强度极大。 因此需要降低耦合,天线去耦设计

过程如图 5 所示。 为了降低耦合,加强磁响应,在天线接

地板 5 中心位置刻蚀掉一个 SRR 结构,变成一个 CSRR

图 4　 MIMO 天线结构图

Fig. 4　 Geometry
 

of
 

MIMO
 

antenna

结构[14] ,得到天线 6 接地板,最终得到了低耦合的效果。

图 5　 天线去耦设计示意图

Fig. 5　 Antenna
 

decoupling
 

design
 

diagram

天线去耦过程中,带宽因去耦结构的设计而有所变

化,但 S11 在 Ka 波段内仍符合要求。 S21 的变化却很明

显,如图 6 所示。 接地板为矩形时,两单元之间相关性较

强,S21 大部分高于- 15
 

dB;设计 CSRR 结构后,产生谐

振,整体耦合降低, 使天线 在 Ka 波 段 内 隔 离 度 小

于-26
 

dB。
2. 2　 去耦原理分析

1)CSRR 结构

CSRR 作为 SRR 的创新形态[12] ,CSRR 与 SRR 的结

构互补,等效电路对偶。 在黑色的接地板上,刻蚀掉白色

双环的 SRR 结构,就可以得到 CSRR 结构图。 如图 7(a)
所示。
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图 6　 S21 变化图

Fig. 6　 Variation
 

diagram
 

of
 

S21

图 7　 CSRR 结构与等效 LC 谐振电路

Fig. 7　 Structure
 

and
 

equivalent
 

LC
 

resonant
 

circuit
 

of
 

CSRR

从原理上讲,当电流沿着 CSRR 线圈流动时,CSRR
间隙和电感之间发生电压梯度。 CSRR 与电场相互作用

的能力改变了谐振频率附近的有效介电常数。 当施加外

部磁通量时,SRR 可以用作磁偶极子,并且当施加外部电

场时,CSRR 可以用作电偶极子。 其等效 LC 并联谐振电

路如图 7(b)所示。
谐振中心频率和 CSRR 的大小总是相关的[15] 。

CSRR 的整个周长可用式(4)表示。

L = λ
2

= c
fn εeff

n = 1,2,3,…
 

　 εeff =
εer + 1

2
(4)

其中, c是光速(3×108
 

m / s), εer 是介电常数 4. 4,εeff

是等效介电常数,L 是 CSRR 的总长度。 CSRR 的谐振频

率 fn 可以被设置以获得传输系数 S21 的谐振频率。 为了

提高阻带抑制效果,两个开口环的周长应该彼此足够

接近。
通过用串联电容代替并联电感,并用并联电感器(式

(5))代替串联电容器,可以使用对偶原理将 CSRR 表示

为 LC 谐振器。
L0 = 2πdmLpul (5)
其中,每单位长度电感由 Lpul 表示。 CSRR 环的串联

电容和电感由式(6)确定。

Lc = L0 / 4 (6)
进而得到传输系数 S21 的谐振频率 fc 由式(7)确定。

fc =
1

2π LcCc

(7)

式中: Lc 为 CSRR 总电感, Cc 为 CSRR 总电容。
SRR 和 CSRR 的参数满足关系式如式 ( 8) ~ ( 9)

所示。

Cc = 4 ε
μ
Ls (8)

C0 = 4 ε
μ
L0 (9)

式中: ε 和 μ 分别表示介电常数和磁导率。
为了天线的紧凑型,只采用了单个 CSRR 结构,可以

作为一种滤波结构。 阻碍两天线单元间的耦合电流,相
当于增加了相互之间的距离,进而减少相关性,达到去耦

目的[16] 。 由图 6 可知,加入 CSRR 结构后在 Ka 频段内

实现了隔离度的提升。
在 33

 

GHz 频率时,图 8 展示了天线系统的电流分布

特性。 由图 8 可知,左侧天线以及 CSRR 结构上电流显

著增强,右侧天线则呈现出较弱的电流强度。 说明了

CSRR 结构的引入有效抑制了天线单元间的表面波传

播,阻碍了电流流动。 因此,天线间的相关性得以降低,
验证了 CSRR 结构在降低天线间耦合方面的有效性[17] 。

图 8　 天线在 33
 

GHz 处电流分布情况

Fig. 8　 Current
 

distribution
 

of
 

the
 

antenna
 

at
 

33
 

GHz

3　 实测与仿真结果分析

3. 1　 S 参数

　 　 毫米波 MIMO 天线实物如图 9 所示。 对实物进行测

试,得出 S 参数的实测结果,与 HFSS 仿真结果进行了对

比分析,如图 10 所示。 从图 10 中可以看出两次结果并

不完全一样,原因可能是天线在焊接 SMA 接头时,有阻

焊材料的掺入。 引起一些误差,但整体上基本相似,对该

天线的实际应用没有影响。
3. 2　 辐射方向图

　 　 天线辐射方向图是用来展示天线在不同方向上对电
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图 9　 天线实物图

Fig. 9　 Physical
 

diagram
 

of
 

the
 

antenna

图 10　 S 参数仿真与实测结果

Fig. 10　 The
 

simulation
 

and
 

measurement
 

results
 

of
 

S-parameter

磁信号的接收和发送的效能,还描绘了距离天线特定范

围内的辐射场。 通常分为 E 面和 H 面。 天线在 30
 

GHz、
34

 

GHz、38
 

GHz 处的 E 面、H 面方向图如图 11 所示。 从

　 　 　 　 　

图 11 可以看出,随频率的升高,方向图产生畸变,这也是

毫米波天线中不利的一面。
3. 3　 包络相关系数(ECC)
　 　 包络相关系数(ECC)是表示 MIMO 系统隔离度的一

个关键参数。 为了体现 MIMO 天线的良好性能,需要降

低两天线间的相关性。 理想情况下,ECC 值为 0,但由于

各种因素的干扰,规定 ECC 值小于 0. 5 即可。 MIMO 天

线的 ECC 值可以通过由仿真与实测获取的 S 参数值代

入式(10)计算得到:
ECC =

| S∗
11S12 + S∗

21S22 | 2

(1 -| S11 |
2 -| S21 |

2)(1 -| S22 |
2 -| S12 | 2)

(10)

式中: S∗
11 为 S11 的共轭值; S∗

21 为 S21 的共轭值[18] 。
MIMO 天线的 ECC 如图 12 所示,从图中可知,天线

的包络相关系数(ECC)小于 0. 001,在规定的范围之内。
3. 4　 增益与辐射效率

　 　 天线的增益和辐射效率是判断天线性能优良的重要

参数。 图 13 为天线的增益和辐射效率图,从中得知,在
Ka 频段内天线增益稳定,但谐振处有上升趋势,分别上

升至 9
 

dBi 左右。 而辐射效率与增益的变化趋势一致,在
Ka 波段内的辐射效率为 75%左右。
3. 5　 性能对比

　 　 设计的天线与其他的天线进行比较,如表 2 所示。
根据天线的介质基板,与文献[11,19-22]相比,天线工作

在 Ka 频段内,同时选用性价比更高的 FR4 材料作为介
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图 11　 天线辐射方向图

Fig. 11　 Radiation
 

patterns
 

of
 

the
 

antenna

图 12　 ECC 仿真与实测结果

Fig. 12　 The
 

simulation
 

and
 

measurement
 

results
 

of
 

ECC

质基板;根据现有去耦方法,与文献[6,14,23-24]设置缺

陷地结构、电磁带隙以及谐振环等相比,采用 CSRR 结构

去耦,得到的天线不仅工作在 Ka 频段内,还有更低的耦

　 　 　 　

图 13　 天线的增益与辐射效率

Fig. 13　 Gain
 

and
 

radiation
 

efficiency
 

of
 

antenna

合和更小的包络相关系数。 一系列相比之下,此天线设

计方法新颖独特,去耦效果显著,为毫米波 MIMO 天线的

设计提供了一种参考方案。

表 2　 天线性能参数对比

Table
 

2　 Comparison
 

of
 

antenna
 

performance
 

parameters
文献 板材 尺寸 / mm 工作带宽 / GHz 隔离度 / dB ECC 方法

[11] Rogers
 

RO
 

4003 15×15×0. 3 26 ~ 40 -30 0. 001 SRR
[19] Rogers

 

RO
 

4003 47×25. 25×0. 3 24 ~ 32 -15 0. 1 CSRR
[20] Rogers

 

RT
 

5880 30×35×0. 787 27. 5 ~ 28. 5 -40 0. 000
 

3 DGS
[21] Rogers

 

RT
 

5880 12×25. 4×0. 8 26. 5 ~ 38. 2 -15 0. 03 DGS / CSRR
[22] Rogers

 

RT
 

5880
 

28. 3×28. 3×
 

0. 508 26. 5 ~ 30. 4 -40 0. 000
 

1 DGS / CSRR
[23] FR4

 

47×38×0. 8 2 ~ 11 -25 0. 003 EBG
[24] FR4 20×34×1 2. 46 ~ 13. 98 -21 0. 003 SRR
[14] FR4

 

30×30×1. 6 2. 8~ 18 -18 0. 02 CSRR
[6] FR4 18×22×1 2. 75 ~ 10. 64 -22 0. 015 DGS

[本文] FR4
 

40×25×1. 2 26 ~ 40
 

-26 0. 001
 

SRR / CSRR

4　 结　 论

　 　 本文提出了一款应用 SRR / CSRR 去耦的毫米波

MIMO 天线。 由带有空心的椭圆辐射贴片、梯形馈线和

SRR 结构组成,实现了毫米波中的 Ka 频段;CSRR 结构

的设计,降低天线单元间的耦合度。 最终,设计的天线尺

寸为
 

40 mm×25 mm×1. 2 mm,工作在 Ka 频段,耦合小于
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dB,包络相关系数极小,增益比较稳定,辐射效率良

好。 一系列结果证实了 SRR / CSRR 技术在去耦方面的

有效性。 因此,可以将此技术广泛应用于 5G 毫米波

领域中。
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