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基于改进 YOLOv8s 的光学遥感小型船舶检测算法∗

朱圣博　 魏利胜　 高　 港　 郑泊文

(安徽工程大学电气工程学院　 芜湖　 241000)

摘　 要:针对海陆边界、近岸岩礁等复杂海洋场景下,光学遥感小型船舶检测成像特征不明显、目标占比小的问题,提出一种改

进 YOLOv8s 的小型船舶检测方法。 首先,在颈部层引入浅层特征图的基础上修改预测层,平衡浅层位置信息和深层语义信息

的权重,增强模型对小目标的关注度;其次,采用融合 FasterNet
 

Block 和高效多尺度注意力机制的 C2f-FE 模块,利用通道分组和

跨通道信息交互,加强对小型船舶的特征提取,并降低模型参数;最后,采用动态检测头模块,在不同预测层级上提高模型对不

同空间尺度、任务目标的检测能力。 实验结果表明,与原始 YOLOV8s 模型相比,改进模型的参数量减少 42. 3%,在 MASATI 数

据集上,改进模型的检测精度 mAP50 和 mAP50:95 值分别提高 4. 2%和 2. 2%,在 DOTA-Ship 和 DOTA-Small
 

Vehicle 数据集上,改
进模型的检测精度 mAP50:95 值分别提高 1. 7%和 1. 4%。 由此可知,改进模型不仅有效地实现轻量化、高精度的小型船舶检测,
而且满足在遥感场景下泛化小目标的高精度检测。
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Abstract:
 

Aiming
 

at
 

the
 

problem
 

that
 

the
 

imaging
 

features
 

are
 

inconspicuous
 

and
 

the
 

proportion
 

of
 

objects
 

is
 

small
 

in
 

the
 

optical
 

remote
 

sensing
 

small
 

ship
 

detection
 

under
 

the
 

complex
 

marine
 

scenes,
 

such
 

as
 

sea-lean
 

boundary
 

and
 

near-shore
 

rocky
 

reefs,
 

an
 

improved
 

small
 

ship
 

detection
 

method
 

based
 

on
 

YOLOv8s
 

is
 

proposed.
 

Firstly,
 

the
 

prediction
 

layers
 

are
 

modified
 

based
 

on
 

the
 

introduction
 

of
 

shallow
 

feature
 

maps
 

in
 

the
 

neck
 

layers,
 

which
 

balances
 

the
 

weights
 

of
 

shallow
 

locational
 

information
 

and
 

deep
 

semantic
 

information,
 

and
 

enhances
 

the
 

attention
 

of
 

the
 

model
 

to
 

small
 

objects.
 

Secondly,
 

the
 

C2f-FE
 

module
 

is
 

adopted
 

to
 

utilize
 

the
 

channel
 

grouping
 

and
 

the
 

cross-channel
 

information
 

interactions,
 

enhance
 

the
 

feature
 

extraction
 

of
 

small
 

ships,
 

and
 

reduce
 

the
 

model
 

parameters,
 

which
 

merges
 

the
 

FasterNet
 

Block
 

and
 

the
 

efficient
 

multi-scale
 

attention
 

mechanism.
 

Finally,
 

the
 

dynamic
 

detection
 

head
 

module
 

is
 

employed
 

to
 

improve
 

detection
 

capability
 

of
 

the
 

model
 

on
 

different
 

spatial
 

scales
 

and
 

object
 

tasks
 

at
 

different
 

prediction
 

layers.
 

The
 

experimental
 

results
 

show
 

that
 

compared
 

with
 

the
 

original
 

YOLOv8s
 

model,
 

the
 

improved
 

model
 

reduces
 

the
 

number
 

of
 

parameters
 

by
 

42. 3%,
 

the
 

detection
 

accuracy
 

mAP50
 and

 

mAP50:95
 values

 

are
 

improved
 

by
 

4. 2%
 

and
 

2. 2%
 

on
 

the
 

MASATI
 

dataset,
 

and
 

mAP50:95
 values

 

are
 

improved
 

by
 

1. 7%
 

and
 

1. 4%
 

on
 

the
 

DOTA-Ship
 

and
 

DOTA-Small
 

Vehicle
 

datasets,
 

respectively.
 

It
 

can
 

be
 

concluded
 

that
 

the
 

improved
 

model
 

not
 

only
 

achieves
 

lightweight
 

and
 

accurate
 

detection
 

of
 

small
 

ships,
 

but
 

also
 

satisfies
 

the
 

high-accuracy
 

detection
 

for
 

the
 

generalized
 

of
 

small
 

objects
 

in
 

remote
 

sensing
 

scenarios.
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0　 引　 言

　 　 随着世界各国经济的深度互补、进出口贸易的增长,
船舶运输的需求与日俱增,规避船舶碰撞、领海主权维护

的遥感船舶检测技术引起广泛关注。 光学遥感图像凭借

成像面积大、宏观性强的优势,为船舶检测提供丰富的物

体和背景空间信息。 然而,光学遥感成像易受天气、光照

等因素影响,同时船舶在图像中目标占比小、特征不明

显,使其难以检测。 因此,光学遥感图像中船舶目标检测

的研究具有重要的理论意义与实际应用价值。
光学遥感船舶目标检测的研究工作,以机器学习和

深度学习为主要研究方向。 传统机器学习检测算法,以
低分辨率遥感图像为研究目标,通过将船舶视为点目标,
应用恒定虚警率检验、广义似然比检验和模板匹配等方

法进行检测[1-2] 。 然而,手工设计视觉特征易受研究人员

时间、精力以及专业程度的限制,难以适应现代大规模、
多样化的遥感图像数据。 深度学习检测算法分为双阶段

和单阶段两种模型。 R-CNN、Faster
 

R-CNN 等经典双阶

段的算法在船舶检测领域广泛应用[3-4] ,并衍生出诸多变

体。 Li 等[5] 引入选择性滤波层,将不同尺度的特征映射

到同一尺度空间,为多尺度船舶生成通用特征,但滤波层

的加入消耗大量计算资源。 为此,Wang 等[6] 从深度可分

离卷积中汲取灵感,设计单次聚合与深度可分离网络,在
实现船舶特征提取的同时,最大程度轻量化模型。 然而,
该方法并不适用于定向舰船的检测场景。 于是,Zhang
等[7] 利用旋转检测头获取船舶角度信息,以应对舰船位

置倾斜的检测任务,并设计可变形感兴趣区域模块,通过

重组特征形状解决特征提取中长宽比失调问题。 由于候

选框生成、候选框分类等冗长操作,使双阶段检测实时性

仍然不高,难以满足实际高性能检测需要。 因此,以

YOLO、SSD 为主的单阶段检测算法[8] 在光学遥感船舶检

测任务中更受关注。 李晖晖等[9] 基于 SSD 设计 CReLU
激活函数,解决模型对船舶目标浅层特征利用率不高的

问题。 然而,在云雾干扰等场景中,CReLU 函数不能引

导模型进行抗干扰训练。 为此,Tian 等[10] 基于 YOLOv5
提出加权融合连接以聚合网络颈部,增强模型在极端天

气下通道特征表示。 但过度特征融合常伴随推理能力的

削弱。 Wang 等[11] 为解决上述问题,通过高斯热图回归

后直接输出特征图,并经简单后处理获取船舶位置,大幅

提高推理速率。 此外,胡欣等[12] 基于 YOLOv5 提出多分

支注意力模块,实现跨维度的船舶位置和语义信息融合,
并引入圆形平滑标签实现旋转检测,弥补单阶段模型定

向船舶检测领域空缺。
尽管上述 SSD 和 YOLO 系列算法,在诸多具有挑战

性的遥感船舶数据集中表现出色。 但是,面向遥感图像

前景和背景难以区分的复杂海洋场景,在检测分辨率较

小的船舶时,现阶段的研究易出现误报和漏报,同时难以

实现轻量化和准确率两者平衡。 相较现有的目标检测模

型,YOLOv8s 能很好地兼顾模型轻量化和准确率。 因此,
通过选取 YOLOv8s 作为基底模型,提出一种适用于光学

遥感小型船舶检测的改进算法,进一步优化检测小型船

舶的性能。 首先,改进模型结构,引入浅层特征图,实现

与浅层船舶位置信息的融合,并修改预测层,改善预测时

对目标船舶尺度的误判;其次,引入特征提取 C2f-FE 模

块,通过融合 FasterNet
 

Block 模块[13] 和高效多尺度注意

力(efficient
 

multi-scale
 

attention,
 

EMA) 模块[14] ,分流冗

余通道信息,聚焦跨通道信息的特征交互;最后,引入动

态检测头( dynamic
 

head,
 

Dyhead) 模块[15] ,通过在不同

预测层上部署动态感知模块,集成更具有特征表示能力

的小目标检测头。

1　 基于 YOLOv8s 算法的改进

　 　 YOLO 系列的不断优化改进,使 YOLO 算法来到 v8
版本。 YOLOv8s 算法由主干网络、颈部网络和检测头组

成。 主干用于提图像的目标特征信息,由 CBS 模块、C2f
模块、SPPF 模块组成,其中,CBS 模块包含卷积 Conv 层、
批归一化 BN 层和激活函数 SiLU 层;颈部对不同层级的

特征图进行融合;检测头根据目标的不同尺寸,在对应预

测层的特征图上进行目标分类和位置回归。
考虑到遥感图像的船舶目标占比小、密度比例大,

YOLOv8s 算法不能满足更高的小型船舶检测需求。 针对

这一问题,对模型结构、通道特征提取和检测头 3 个方面

对 YOLOv8s 算法进行优化。 首先,通过颈部网络添加小

目标上采样层,引入浅层特征图,构建与主干网络的通道

连接,使其能融合浅层目标位置信息,在此基础上修改检

测头的预测层级,通过剔除大目标预测层与添加小目标

预测层,优化预测过程中对小目标尺度的判定;其次,引
入特征提取 C2f-FE 模块,以替换主干网络的 C2f 模块,
增强主干网络的特征提取能力,在提升检测精度的同时

最大程度地降低参数量;最后,采用 Dyhead 模块,以替换

原始的解耦头模块,增强了检测头对小目标中不同特征

层级的适应能力。
1. 1　 模型结构的改进

　 　 特征图在检测过程中具有重要作用,如颈部层融合

不同尺度特征图、预测层构建分类与回归特征图等。 根

据特征图与输入层的距离,细分为浅层与深层。 如图 1
(a)所示,浅层特征图距输入层较近,具有更高分辨率,
包含更多利于小型船舶检测的位置信息。 然而,由于遍

历的卷积较少,其获取的语义信息较低。 相反,如图 1
(b)所示,深层特征图距输入层较远,随着图像信息的压
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缩,深层网络感受野及重叠区域逐渐增加,使其包含更多

语义信息,但对小目标位置感知较弱。

图 1　 特征图可视化

Fig. 1　 Visualization
 

of
 

feature
 

maps

改进模型整体的结构如图 2 所示,其中,由于颈部层

　 　 　 　

遍历连续上采样的卷积层较少,融合的特征图尺寸远远

小于上采样补偿,导致小型船舶的位置信息丢失。 同时,
预测层选择 3 个深层特征图进行预测,使模型预测过程

对小目标的尺度感知较弱。 为解决上述问题,通过不断

调整浅层特征图与深层特征图所参与特征融合和目标预

测的权重,改进模型结构以提高小目标检测敏感度。 基

础结构与权重调整的变体结构,如图 3 所示,结构 1 在基

础结构上引入大小为 160×160 的浅层特征图和小目标预

测层,并保留 20×20 的深层特征图和大目标预测层;结构

2 在结构 1 基础上剔除 20 × 20 的大目标预测层;结构 3
在结构 2 基础上剔除 20×20 的深层特征图。 通过改变特

征图连通性,浅层特征图参与特征融合和预测权重比例

从基础结构到结构 3 逐渐增加。

图 2　 改进 YOLOv8s 模型整体结构

Fig. 2　 The
 

overall
 

structure
 

of
 

the
 

improved
 

YOLOv8s
 

model

　 　 对比不同模型结构的实验结果,最终得到结构 2 为

检测小型船舶的最佳结构,且保持较小内存占用。 结构

2 通过颈部层引入浅层特征图,避免特征融合时船舶位

置信息的丢失。 同时,颈部层保留深层特征图,使特征融

合时获取深层语义信息,并降低引入浅层特征图的噪声

累积。 最终,小目标预测层的引入和大目标预测层的剔

除,提高预测时对小型船舶的尺度感知能力,避免模型对

目标尺度的误判。

1. 2　 特征提取模块的改进

　 　 网络层数的加深导致特征图通道数的扩增,使特征

图携带相似信息造成特征冗余,同时使模型在特征提取

时对小目标的敏感度不高。 为缓解上述问题,采用特征

提取 C2f-FE 模块,通过引入轻量化主干 FasterNet 的

FasterNet
 

Block 结构,并在 FasterNet
 

Block 中融合 EMA
注意力机制,经通道重塑和维度分组最大化保留小型船

舶的特征信息,并进一步轻量化模型。
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图 3　 3 种变体模型结构(菱形框代表不同尺度特征图,虚线框代表 20×20 浅层特征图,点划线框代表 160×160 深层特征图)
Fig. 3　 Three

 

different
 

model
 

structures
 

(The
 

diamond
 

boxes
 

represent
 

feature
 

maps
 

at
 

different
 

scales,
 

the
 

dashed
 

box
represents

 

the
 

20×20
 

deep
 

feature
 

map,
 

and
 

the
 

dotted
 

line
 

box
 

represents
 

the
 

160×160
 

shallow
 

feature
 

map)

　 　 1)
 

EMA 注意力机制

注意力机制能有效提高模型对船舶目标敏感度,使
模型提取更多有效特征。 EMA 提出并行网络和跨空间

学习思想,即不进行通道降维,在每个并行子网络中构建

局部跨通道交互,在降低计算开销的同时不增加模型大

小。 如图 4 所示,通过跨空间学习聚合并行分支的输出

特征,EMA 能捕获像素级成对关系。

图 4　 EMA 注意力机制结构

Fig. 4　 Structure
 

of
 

the
 

EMA
 

Attention
 

Mechanism

EMA 注意力首先采用 Group 特征分组,将输入特征

X ∈ RC×H×W 按通道维度划分为 G 个子特征以学习不同语

义;其次,采用并行网络,双路径分别沿 1×1 分支依次经

过 Avg
 

Pool 池化、拼接、激活、相乘实现跨通道特征交互,
单路径沿 3 × 3 分支经 3 × 3 卷积捕获多尺度特征表示;
随后,采用跨空间学习,一方面,经分组归一化 Group

 

Norm 后利用 Avg
 

Pool 对 1×1 分支编码全局空间信息,与
3×3 分支输出聚合后统一维度为 R1

1 ×1 ×C / / G × R3
C / / G×H×W 。

另一方面,利用 Avg
 

Pool 对 3×3 分支编码全局空间信息,
与 1 × 1 分 支 输 出 聚 合 后 统 一 维 度 为 R3

1 ×1 ×C / / G ×
R1

C / / G×H×W。 其中,Avg
 

Pool 如下:

ZC = 1
H × W∑

H

j
∑

W

i
xc( i,j) (1)

最后,采用 Matmul 矩阵相乘对每组输出特征映射进

行计算,生成两个空间注意力权重值集合,经 Sigmoid 函

数后得到输出特征图。 EMA 采用并行网络重新校准并

行分支的权重,突出强调小型船舶特征,通过跨空间学习

进一步聚合并行分支特征,利于改善遥感图像有限感受

野导致局部信息交互不良的问题。
2)

 

C2f-FE 模块

如图 5 所示,在原始的特征提取 C2f 模块中,假设首

个 CBS 模块输入通道数为 2x ,经 Split 层将其分为 2 份 x
个通道的特征图,后续串联的 n 个 Bottleneck 模块[16] 的

输入均为 x 个通道的特征图,且每个 Bottleneck 的输出均

作为下一个 Bottleneck 的输入。 最后 n个 Bottleneck 模块

按通道拼接得到 (2 + n)x 维的特征图,经第 2 个 CBS 模

块将其通道压缩为 2x 输出。
受轻量级主干网络 FasterNet 和 EMA 注意力机制的

启发,特征提取 C2f-FE 模块通过引入 Faster-EMA
 

Block
替换 Botteneck 结构,在降低参数量和计算量的同时增强

小型船舶目标的特征提取,缓解因通道信息分流导致精

度下降的问题,如图 6 所示。
首 先, Faster-EMA

 

Block 用 部 分 卷 积 ( partial
 

convolution,
 

PConv)选取 1 / 4 通道进行卷积处理,余下
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图 5　 C2f 模块及 Bottleneck 结构

Fig. 5　 Structure
 

of
 

the
 

C2f
 

and
 

Bottleneck
 

block

　 　 　 　

3 / 4 通道保持维度不变,并与卷积处理的 1 / 4 通道进行

拼接输出。 与 Bottleneck 结构相比,PConv 在减小冗余计

算的同时最大程度保留原有通道信息;其次,由卷积、归
一化和激活函数组成的 CBR 模块采用 1×1 逐点卷积将

高层输出特征图通道数扩张两倍,避免通道信息浪费的

同时缓解因 PConv 造成特征图信息丢失的问题;最后,利
用 1×1 卷积将高层输出通道数还原,保证捷径分支和主

干处理后的特征图具备相同维度。 此外,在 1×1 卷积后

加入 EMA 的操作,实现其余通道信息的充分利用和跨通

道船舶特征信息的畅通交互。
尽管串联 Bottleneck 经不同尺度特征融合后利用多

层次的信息,提高了特征图的表达能力。 然而,每增加

　 　 　

图 6　 C2f-FE 模块及 Faster-EMA
 

Block 结构

Fig. 6　 Structure
 

of
 

the
 

C2f-FE
 

module
 

and
 

Faster-EMA
 

Block

一个 Bottleneck 会伴随额外参数量的增加。 为此,C2f-FE
模块 使 用 Faster-EMA

 

Block 替 换 原 始 C2f 模 块 的

Bottleneck。 每个 Faster-EMA
 

Block 仅需对 1 / 4 通道进行

卷积操作,而 1×1 卷积较原始 3×3 卷积参数量更小,同
时 EMA 注意力的融入最大程度限制参数量的增加。 最

终, Faster-EMA
 

Block 的 参 数 量 近 似 为 Bottleneck 的

1 / 16。

1. 3　 检测头的改进

　 　 在遥感图像中小型船舶与海洋背景具有特征相似的

特点,导致模型易将目标与背景相互混淆,同时空间位置

和尺度差异也为预测的定位与分类带来挑战。 由

Dyhead 通过将多头自注意力分别部署在尺度感知的特

征层级、空间感知的空间层级、任务感知的输出通道层级

上,并结合在同一框架内。 因此,Dyhead 有助于在同等

算力下有效提升检测头区分目标和背景的性能。
如图 7 所示,Dyhead 将特征金字塔输出的四维张量

L × W × H × C 重塑为三维张量 L × S × C ,即特征层级、
空间层级、输出通道层级。 随后,在特征层级部署尺度感

知注意力 AL ;在空间层级部署空间感知注意力 AS ;在输

出通道层级部署任务感知注意力 AC ;并依次经过 AL、AS、

AC 。 其中, AL 根据语义的重要性,动态融合不同尺度船
舶的特征; AS 通过关注船舶的空间位置与特征层级间的
共通分辨区域,更好地定位图像中船舶的位置; AC 通过

联合学习并概括船舶的不同特征,动态打开或关闭特征

通道,以适应不同场景检测任务。 通过分离式注意力,
Dyhead 对每个维度进行特征感知,使检测头对小型船舶

的检测更为友好。
因此,对于给定的三维特征张量 H ∈ RL×S×C ,Dyhead

将整体注意力转化为三个序列化的注意力,每个注意力

只聚焦于一个角度,其定义如下:
W(H) = AC(AS(AL(H)·H)·H)·H (2)
由于遥感图像中感知场较大,而 YOLOv8s 的解耦头

结构没有动态感知的能力。 因此,引入 Dyhead 模块提升

小型船舶检测的效果。 此外,3 种应用于检测头的感知

注意力能进行多次堆叠,考虑到计算开销等因素,改进模

型仅使用一个 Dyhead 模块。

2　 实验与分析

2. 1　 实验数据集

　 　 MASATI 数 据 集[17] 由 阿 利 坎 特 大 学 提 出, 由
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图 7　 动态检测头结构

Fig. 7　 Structure
 

of
 

the
 

dynamic
 

detection
 

head

Microsoft 必应地图获取的 7
 

389 张光学卫星遥感图像组

成,分辨率均为 512×512 像素。 数据集不仅包含不同光

照条件下各类小型船舶图像,还包含各种海洋场景,如纯

海洋、礁石和港口等。 通过 7
 

389 张图像中剔除无目标

图像,选取 2
 

368 张包含船舶的图像作为实验数据集,按
7 ∶ 2 ∶ 1 随机划分训练集、验证集和测试集。

DOTA 数据集[18] 由中国资源卫星与谷歌地球应用中

心共同提供,共计 2806 张航拍图,标注船舶、港口、储槽、
网球场、篮球场、大型车辆、小型车辆等共计 15 个类别与

188
 

282 个实例。 数据集像素尺寸在 800 ~ 4
 

000 范围间。
本文选取 DOTA 数据集中船舶和小型车辆两个类别,分
别构建 DOTA-Ship 和 DOTA-Small

 

Vehicle 数据集。 同

时,根据图像金字塔调整图像尺寸,将图像裁剪为 1
 

024×
1

 

024 像素。
2. 2　 实验配置与测评标准

　 　 实验采用的硬件配置为 i5-12490F 处理器,NVIDIA
 

GeForce
 

RTX
 

3060
 

12 G 显卡;操作系统为 Windows
 

11;软
件平台为 PyCharm; 深度学习框架为 Pytorch1. 12. 0;
Python 版本为 3. 8,在 CUDA11. 4 上进行加速训练。 实验

参数的设置:batch
 

size 为 16;训练迭代次数为 300;采用

随机梯度下降作为模型优化器;采用余弦退火学习衰减

方案;初始学习率为 0. 01,权重衰减设为 1×10-2。
目标检测算法评价指标主要分为模型复杂度和检测

精度。 模型复杂度由计算量 GFLOPs、参数量 Params 体

现,数值越大代表模型复杂程度越高。 模型检测精度由

准确率(precision,
 

Pre)、召回率( recall,
 

Re)和平均准确

率(mean
 

average
 

precision,
 

mAP)衡量。 准确率是所有预

测为真样本结果中预测正确的概率,召回率是根据所有

实际正样本中正确预测为正样本的比例计算,准确率和

召回率的定义分别如下:

Precision = TP
TP + FP

(3)

Recall = TP
TP + FN

(4)

式中:TP 为真正例,FN 为假反例,FP 为假正例。
平均准确率是所有类别准确率的平均值,在 n 个类

别的前提下,计算公式如下:

mAP = 1
n ∑

n

i = 1
∫1

0
Precision(Recall)d(Recall) (5)

2. 3　 消融实验

　 　 为探索不同改进模型结构对遥感图像小型船舶检测

任务的效果,并获取最佳的模型结构。 本节在 MASATI
数据集上对不同模型结构进行消融实验,实验结果如表

1 所示。

表 1　 不同模型结构消融结果

Table
 

1　 Ablation
 

results
 

of
 

different
 

model
 

structures %
模型结构 Pre Re mAP50 mAP50:95

基础结构 80. 9 74. 3 77. 2 31. 8
结构 1 82. 5 72. 9 77. 5 32. 0
结构 2 83. 9 74. 7 79. 4 33. 2
结构 3 81. 9 73. 4 78. 2 32. 2

　 　 由表 1 可知,结构 1 引入了浅层特征图和小目标预

测层,尽管提升了小型船舶的检测精度,但是大目标预测

层干扰了模型对目标尺度的判断,使精度提升不明显;结
构 2 在结构 1 的基础上,保留深层特征图并剔除大目标

预测层,使模型能融合深层语义特征,又适当分配预测层

权重并聚焦小目标尺寸,与基础结构相比,结构 2 在

mAP 50 和 mAP 50:95 分别提升 2. 2%和 1. 4%;结构 3 在结

构 2 的基础上剔除深层特征图,由于深层船舶语义信息

的减少,结构 3 相对基础结构在精度上的提升也不显著。
为直观地展示改进方法较原始模型更为优越的性

能,通过添加不同的改进点至原始模型,在 MASATI 数据

集上进行消融实验,实验结果如表 2 所示。
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表 2　 消融实验结果

Table
 

2　 The
 

results
 

of
 

the
 

ablation
 

test
方法 组 1 组 2 组 3 组 4 组 5 组 6

原始模型 √ √ √ √ √ √
C2f-FE √ √ √
结构 2 √ √ √
Dyhead √ √

mAP50 / % 77. 2 77. 0 79. 4 78. 1 80. 3 81. 4
mAP50:95 / % 31. 8 31. 9 33. 2 32. 7 32. 9 34. 0
Params / M 11. 1 9. 7 7. 4 10. 9 6. 0 6. 4

　 　 对比实验组 1 与实验组 2 可知,C2f-FE 模块采用跨

维度交互增强不同通道间的信息融合,促使输入通道信

息变窄,在保持精度指标稳定的同时降低模型参数量;对
比实验组 1 与实验组 3 可知,结构 2 平衡了浅层特征图

与深层特征图在特征融合与目标预测的权重,有效改善

船舶位置特征丢失和尺度判定不准确的问题,mAP 50 和

mAP 50:95 分别提升 2. 2%和 1. 4%,同时参数量降低 30%;

对比实验组 1 与实验组 4 可知,Dyhead 模块动态增强不

同尺度的小型船舶特征的预测,mAP 50 和 mAP 50:95 均提

升 0. 9%;对比实验组 3 与实验组 5 可知,C2f-FE 模块在

结构 2 的应用,进一步提升了模型检测精度,压缩了模型

复杂度;对比实验组 1 与实验组 6 可知,相较原始模型,
改进模型参数量降低 42. 3%,mAP 50 和 mAP 50:95 分别提

升 4. 2%和 2. 2%。 由此可知,改进模型不仅准确率得以

提高,而且更易于实际部署。
为更清晰地展示改进模型对小型船舶目标的特征增

强效果,如图 8(a1) ~ (d1)所示,输入 4 张背景各异、单多

目标的遥感图像以充分验证改进模型对小型船舶特征提

取的有效性。 如图 8(a2) ~ (d2 )和图 8(a3 ) ~ (d3 )所示,
对比原模型和改进模型的热力图可知,原模型对小目标

的关注度较少,尚未提取到丰富的船舶特征,将海岸线树

丛误检为船舶的现象较为严重。 而改进模型对船舶特征

提取效果得到增强,尤其是小尺度船舶。

图 8　 特征提取效果对比

Fig. 8　 Comparison
 

of
 

feature
 

extraction
 

effects

2. 4　 对比实验

　 　 本节将改进模型与 YOLOv5s、 YOLOv7、 YOLOv8s、
RT-DETR[19] 、文献[20]、文献[21]、文献[22]在 MASATI
数据集上进行实验对比,结果如表 3 所示。

由表可知,由于 YOLOv7 和 RT-DETR 的主干网络层

数较深,获取的深层语义信息较多,忽略了浅层位置信

息,在检测小型船舶时效果不理想;文献[20] 采用 HR-
FPN 进行特征提取,但其对小型船舶的特征捕捉不完整,

既增加了计算量,检测结果同样不理想;文献[21] 采用

相似性掩码结构,过滤部分无效区域,但易造成小型船舶

丢失,整体性能不突出;文献[22]在轻量化后 Re 值达到

最佳 77. 0%,但是实际模型仍较大。 而改进模型在指标

Pre、 mAP 50、 mAP 50:95、 Params 上 均 达 到 最 优, 分 别 为

85. 3%、81. 4%、34. 0%、6. 4 M,相比原始模型 YOLOv8s,
改进模型分别优化了 4. 4%、4. 2%、2. 2%、3. 7 M,实现了

YOLOv8s 检测准确率和模型轻量化的双向提升。
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表 3　 对比实验结果(1)
Table

 

3　 The
 

results
 

of
 

the
 

comparison
 

test
 

(1)

模型
Pre /
%

Re /
%

mAP50 /

%

mAP50:95 /

%
Params /

M
YOLOv5s 82. 3 73. 3 77. 1 30. 2 7. 1
YOLOv7 75. 1 57. 7 60. 8 20. 3 36. 5
YOLOv8s 80. 9 74. 7 77. 2 31. 8 11. 1
RT-DETR 80. 8 76. 1 79. 1 33. 0 19. 9
文献[20] 84. 6 72. 0 77. 3 - 16. 6
文献[21] 82. 5 76. 5 78. 7 - 7. 5
文献[22] 80. 0 77. 0 76. 0 - 36. 1
改进模型 85. 3 74. 9 81. 4 34. 0 6. 4

　 　 如图 9 所示,对上述部分算法检测效果进行可视化

对比。 结果表明,与 YOLOv5s、 YOLOv7、 YOLOv8s、 RT-
DETR

 

4 种模型相比,改进模型在小型船舶检测任务中具

有更优的检测效果。
此外, 改 进 模 型 还 分 别 同 YOLOv5s、 RT-DETR、

YOLOv7、YOLOv8s、文献[ 23]、文献[ 24] 在 DOTA-Ship
数据集和 DOTA-Small

 

Vehicle 数据集上进行对比实验,
实验结果如表 4 所示。 实验结果表明,在 DOTA-Ship 数

据集上, 改进模型在 mAP 50 和 mAP 50:95 上分别达到

91. 4% 和 69. 6%, 相 比 原 模 型 YOLOv8s, 改 进 模 型

mAP 50:95 提高 1. 7%,验证了改进模型在检测小型船舶方

　 　 　 　

图 9　 部分算法检测效果对比

Fig. 9　 Comparison
 

of
 

detection
 

effect
 

with
 

part
 

algorithms

表 4　 对比实验结果(2)
Table

 

4　 The
 

results
 

of
 

the
 

comparison
 

test
 

(2) %
模型 Pre Re mAP50 mAP50:95

DOTA-Ship
YOLOv5s 93. 0 86. 1 90. 2 65. 5
YOLOv7 92. 9 85. 5 89. 3 63. 1

RT-DETR 92. 2 85. 1 88. 7 64. 6
YOLOv8s 92. 6 87. 0 91. 2 67. 9
文献[23] 93. 9 81. 9 90. 9 64. 5
文献[24] - - 88. 5 66. 4
改进模型 93. 5 87. 4 91. 4 69. 6

DOTA-Small
 

Vehicle
YOLOv5s 76. 3 74. 8 76. 3 46. 4
YOLOv7 77. 1 78. 2 79. 3 45. 0

RT-DETR 75. 1 70. 6 75. 4 46. 2
YOLOv8s 77. 3 78. 7 80. 2 50. 1
文献[23] 73. 6 76. 0 75. 3 48. 3
文献[24] - - 80. 8 45. 6
改进模型 78. 2 80. 4 81. 5 51. 5

面的优越性;在 DOTA-Small
 

Vehicle 数据集上,改进模型

在 mAP 50 和 mAP 50:95 上分别达到 81. 5%和 51. 5%,相比

原模型 YOLOv8s,改进模型 mAP 50 和 mAP 50:95 分别提高

1. 3%和 1. 4%,表明了改进模型在遥感图像中检测泛化

小目标方面具有出色的泛化性。

3　 结　 论

　 　 为解决遥感图像检测任务中小型船舶难以检测的问

题,研究了一种改进 YOLOv8s 算法。 首先,改进模型结

构以平衡浅层特征图和深层特征图的权重,增强对小型

船舶的定位能力和尺度判别能力;其次,采用 C2f-FE 模

块,通过融合 Faster
 

Block 模块和 EMA 注意力机制,分流

特征通道,聚焦学习跨通道特征,实现跨空间信息聚合,
增强特征提取能力;随后,引入 Dyhead 模块,在预测层的
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不同层级部署注意力机制,动态增强特征融合后的小型

船舶特征,加强模型的分类与定位能力。 最后,在 3 个公

开数据集上进行消融实验和对比实验。 实验结果表明,
与其他主流的检测算法相比,改进模型在检测效果和模

型大小方面均表现优异,更易于实际部署应用。 后续工

作将进一步压缩模型大小,并保持检测准确率。
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