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Optical remote sensing small ship detection algorithm
based on improved YOLOvV8s

Zhu Shengbo Wei Lisheng Gao Gang Zheng Bowen

(School of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China)

Abstract: Aiming at the problem that the imaging features are inconspicuous and the proportion of objects is small in the optical remote
sensing small ship detection under the complex marine scenes, such as sea-lean boundary and near-shore rocky reefs, an improved small
ship detection method based on YOLOv8s is proposed. Firstly, the prediction layers are modified based on the introduction of shallow
feature maps in the neck layers, which balances the weights of shallow locational information and deep semantic information, and
enhances the attention of the model to small objects. Secondly, the C2f-FE module is adopted to utilize the channel grouping and the
cross-channel information interactions, enhance the feature extraction of small ships, and reduce the model parameters, which merges the
FasterNet Block and the efficient multi-scale attention mechanism. Finally, the dynamic detection head module is employed to improve
detection capability of the model on different spatial scales and object tasks at different prediction layers. The experimental results show
that compared with the original YOLOv8s model, the improved model reduces the number of parameters by 42.3%, the detection
accuracy mAPg, and mAP ,; values are improved by 4.2% and 2.2% on the MASATI dataset, and mAP; o values are improved by
1.7% and 1.4% on the DOTA-Ship and DOTA-Small Vehicle datasets, respectively. It can be concluded that the improved model not
only achieves lightweight and accurate detection of small ships, but also satisfies the high-accuracy detection for the generalized of small
objects in remote sensing scenarios.
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Table 3 The results of the comparison test (1)

Hm Pre/ Re/  mAPsy/ mAPg, o5/ Params/
% % % % M
YOLOv5s 82.3 73.3  71.1 30.2 7.1
YOLOv7 75.1 57.7  60.8 20.3 36.5
YOLOv8s 80.9 74.7  71.2 31.8 1.1
RT-DETR 80. 8 76. 1 79.1 33.0 19.9
SCHk[20] 84.6 72.0  71.3 - 16.6
k[ 21] 82.5 76.5  78.7 - 7.5
k[ 22] 80.0 77.0  76.0 - 36. 1
Gleriz el 85.3 74.9  81.4 34.0 6.4
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Fig.9 Comparison of detection effect with part algorithms
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Table 4 The results of the comparison test (2) %
el Pre Re mAPs, mAP s 05
DOTA-Ship
YOLOvS5s 93.0 86. 1 90.2 65.5
YOLOv7 92.9 85.5 89.3 63. 1
RT-DETR 92.2 85.1 88.7 64.6
YOLOv8s 92.6 87.0 91.2 67.9
SCHR[ 23] 93.9 81.9 90.9 64.5
SCHk[24] - - 88.5 66. 4
Eieiiz sl 93.5 87.4 91.4 69. 6
DOTA-Small Vehicle
YOLOvS5s 76.3 74.8 76.3 46. 4
YOLOv7 77.1 78.2 79.3 45.0
RT-DETR 75.1 70. 6 75.4 46.2
YOLOv8s 77.3 78.7 80.2 50. 1
k[ 23] 73.6 76.0 75.3 48.3
SCHR[ 24 - - 80. 8 45.6
fleny g 78.2 80. 4 81.5 51.5
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