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摘　 要:当三相异步电动机发生机械振动时,主回路中接触不良的电气接触点在振动作用下会产生串联型故障电弧,进而影响

电路安全甚至引发电气火灾。 而振动条件会加剧了故障电弧信号的复杂性,因此本文以回路电流信号为研究对象,提出了一种

振动条件下的高实时性串联型故障电弧检测方法。 首先通过构建滑动记忆矩阵对实验电流数据进行动态保存,其次通过正交

方向改进局部三值化模式( orthogonality
 

direction
 

local
 

ternary
 

pattern,OD-LTP)提取滑动记忆矩阵的纹理特征,最终将统计的

OD-LTP 图像的灰度分布直方图幅值作为特征向量,通过基于沙猫群优化( sand
 

cat
 

swarm
 

optimization,SCSO) 的支持向量机

(support
 

vector
 

machine,SVM)建立振动串联型故障电弧检测模型。 本文通过对比不同矩阵参数,得到最佳的滑动记忆矩阵尺

寸,最终所提方法对故障电弧识别的准确率达到 99. 2%。 通过对不同工况、不同特征提取方法对比分析,表明本文提出方法不

仅适用于不同工况运行的工业电机变频器系统,其相对于其他特征提取方法也具有较高的实时性。
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Abstract:When
 

mechanical
 

vibration
 

occurs
 

in
 

a
 

three-phase
 

asynchronous
 

motor,
 

the
 

poor
 

electrical
 

contact
 

points
 

in
 

the
 

main
 

circuit
 

will
 

generate
 

a
 

series
 

of
 

fault
 

arcs
 

under
 

the
 

influence
 

of
 

vibration,
 

which
 

will
 

compromise
 

circuit
 

safety
 

and
 

potentially
 

lead
 

to
 

electrical
 

fires.
 

The
 

vibration
 

condition
 

complicates
 

the
 

fault
 

arc
 

signal,
 

so
 

this
 

paper
 

proposes
 

a
 

highly
 

real-time
 

series
 

fault
 

arc
 

detection
 

method
 

under
 

vibration
 

conditions.
 

First,
 

experimental
 

current
 

data
 

is
 

dynamically
 

preserved
 

by
 

constructing
 

a
 

sliding
 

memory
 

matrix.
 

Secondly,
 

the
 

texture
 

features
 

of
 

the
 

sliding
 

memory
 

matrix
 

are
 

extracted
 

using
 

orthogonality
 

direction
 

local
 

ternary
 

pattern
 

( OD-LTP).
 

Finally,
 

the
 

amplitude
 

of
 

the
 

grayscale
 

distribution
 

histogram
 

of
 

the
 

statistical
 

OD-LTP
 

images
 

is
 

taken
 

as
 

the
 

feature
 

vector.
 

A
 

vibrating
 

series
 

fault
 

arc
 

detection
 

model
 

is
 

established
 

using
 

support
 

vector
 

machine
 

(SVM)
 

optimized
 

by
 

sand
 

cat
 

swarm
 

optimization
 

( SCSO).
 

By
 

comparing
 

different
 

matrix
 

parameters,
 

the
 

proposed
 

method
 

achieves
 

an
 

accuracy
 

of
 

99. 2%.
 

Through
 

a
 

comparative
 

analysis
 

of
 

different
 

feature
 

extraction
 

methods
 

under
 

various
 

working
 

conditions,
 

it
 

is
 

shown
 

that
 

the
 

proposed
 

method
 

is
 

not
 

only
 

suitable
 

for
 

industrial
 

motor
 

inverter
 

systems
 

under
 

different
 

working
 

conditions,
 

but
 

also
 

exhibits
 

higher
 

real-time
 

performance
 

compared
 

to
 

other
 

feature
 

extraction
 

methods.
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0　 引　 言

　 　 在实际生产中,三相异步电动机产生机械振动的原

因主要有 3 种,分别是电动机动平衡不好、轴承不良、转
轴弯曲等机械故障;电动机安装基础不平、紧固件松动等

安装问题;以及机械负载端振动传递、传动装置安装不良

等外界原因。 当三相异步电动机产生机械振动导致电气
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接触点松动时,电气接触点会在振动作用下产生串联故

障电弧。 串联型故障电弧不仅会增加电动机的能耗,使
其更易损坏,甚至还可能引发电气火灾。 由于串联型故

障电弧具有随机性、隐蔽性等特点,加之接触点振动使其

信号特征复杂化,因此研究三相电动机负载振动条件下

串联型故障电弧的检测问题是非常必要的。
近年来,关于串联故障电弧研究多聚焦于提取回路

电流信号特征方法,并探索了多种特征提取思路。 部分

研究者利用原始电流信号的时域特性提取特征,例如文

献[1]计算电流信号的脉冲因子进行故障电弧初步识

别,文献[2]根据信号类型枚举方法结合分类算法实现

家庭单负载电路串联型故障电弧检测。 同时,采用时频

域分析方法也是研究者的另一主要研究思路。 部分研究

者在时域、频域的基础上结合时频域分析方法如小波包

能量谱等构建特征集[3] 。 还有研究者通过变分模态分

解[4] 、经验模态分解[5] 及融合自适应噪声的完备经验模

态分解[6] 等改进模态分解方法对电流信号进行分解,并
提取高频分量的信号特征构建特征集。

除了传统的分解方法,一些研究者尝试将一维电流

信号转换为多维矩阵进行处理。 文献[7]将半周期电流

信号时间序列排布成二维矩阵后,利用自归一化卷积神

经网络实现低压串联故障电弧识别。 文献[8]提出了使

用双树复小波变换结合改进的奇异值分解的特征提取方

法。 文献[9]利用无阈值递归图结合灰度共生矩阵方法

处理电流信号,并提取 21 个矩阵参数特征作为串联故障

电弧特征。 这些方法将信号处理与图像处理相结合,为
电流特征提取提供了新的视角。 除此之外,一些研究者

基于深度学习算法如全连接神经网络[10] 来构建关于电

流波形的检测模型。
上述特征提取思路集中研究光伏直流、航空交流以

及家庭低压配电系统,并未涉及工业系统电动机带变频

器负载的串联故障电弧检测问题,目前相关学者针对该

问题进行了以下一系列研究。 文献[11] 利用循环神经

网络对干路电流进行检测实现多电机负载电路的串联故

障电弧检测和选线。 文献[12] 利用核主成分分析提取

故障相电流与电源电压的第五、六主元的峰度和偏度作

为特征,利用萤火虫算法优化( firefly
 

algorithm,FA)的支

持向量机(support
 

vector
 

machines,SVM)实现了复杂谐波

下串联型故障电弧检测。 文献[13] 使用变分模态分解

对单相电流信号分解后,提取分量的样本熵与能量熵作

为特征,通过 FA-SVM 实现对电机变频器负载的串联故

障电弧检测。 文献[14] 对故障相电流差分信号使用小

波包分解重构成矩阵,并将其灰度-梯度共生矩阵的 15
个特征量作为故障特征。 文献[15] 通过分数阶傅里叶

变换和奇异值分解提取电流信号特征,借助网格搜索

(grid
 

search, GS ) 和粒子群优化算法 (
 

particle
 

swarm
 

optimization,PSO)优化的 SVM 实现了电机变频器负载电

弧故障检测和相位选择。 文献[16] 对故障相电流信号

进行 5 层经验小波分解后构成信号延迟矩阵并利用奇异

值分解提取矩阵特征,通过 GS-PSO-SVM 实现了串联型

故障电弧的识别。 文献[17] 基于逐点等距映射将电流

信号重建为矩阵,通过轻量化卷积神经网络建立故障电

弧分类识别模型,并在嵌入式设备上实现了在线检测。
上述研究工作促进了三相异步电动机电路系统中串

联型故障电弧检测技术的发展,但在文献[12-17]中忽视

了变频器后端故障电弧及振动条件对电流波形的影响。
为了解决这一问题,本文研究了工业电机变频器负载电

路在振动条件下串联型故障电弧快速检测方法。 本文的

主要学术贡献和创新内容如下:
1)提出了一种滑窗记忆矩阵方法动态保存电流数

据,并通过对比分析找到最佳矩阵尺寸,减少识别所需数

据量,提高振动串联故障电弧检测的实时性。
2) 设 计 一 种 正 交 方 向 改 进 局 部 三 值 化 模 式

(orthogonality
 

direction
 

local
 

ternary
 

pattern,OD-LTP)提取

滑窗记忆矩阵纹理特征,为实现检测模型的快速性创造

了条件。
3)通过在不同工况下进行实验验证,证明了本文方

法在不同工况下串联型故障电弧检测的通用性;通过对

比不同特征提取方法,证明所提算法具有准确性高、实时

性好的特点。

1　 电机变频器负载串联型故障电弧实验

1. 1　 实验平台介绍

　 　 本文搭建了振动条件下三相异步电动机变频器负载

串联型故障电弧实验平台。 实验电路分别由主电路、信
号采集电路以及电弧发生装置三部分组成,实验系统整

体结构如图 1 所示。 主电路使用三相 AC
 

380
 

V 作为电

源,使用带 VFD110E43A 型变频器的 Y160M-6-11KW 三

相异步电动机作为负载,通过磁粉制动器调节三相异步

电动机的负载电流。 本文在变频器与三相异步电动机间

串联电弧发生装置,并通过信号采集电路采集电流数据。
信 号 采 集 电 路 由 DC ± 15

 

V 电 源 供 电, 使 用

LHB100A5VY2 型电流传感器采集回路电流信号,并使用

USB3200 型数据采集卡将采集的电流数据上传至计算机

中,在 LabVIEW 软件中进行显示。
振动故障电弧发生器如图 2 所示,通过音圈电机带

动移动电极做往复运动,模拟接触不良的电气接触点在

电动机发生机械振动时接触点的振动情况,并实现振动

参数的精确控制。 设备使用 DC±24
 

V 开关电源为振动

故障电弧发生器供电,使用 Comploy 音圈电机控制器通

过电流信号与来自光栅传感器的位置信号对音圈电机进
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图 1　 实验系统图

Fig. 1　 Experimental
 

system
 

diagram

行控制,并在计算机中通过 CME 软件完成振动参数的具

体设置,以及振动的启动和停止,各部分参数如表 1
所示。

图 2　 振动故障电弧发生器

Fig. 2　 Vibration
 

fault
 

arc
 

generator

表 1　 振动电弧发生器设备参数

Table
 

1　 Vibration
 

arc
 

generator
 

equipment
 

parameters

设备名称 设备型号

静止电极 5
 

mm 直径的圆柱形碳棒

移动电极 5
 

mm 直径的锥形铜棒

音圈电机 OWS80-06-LB-05
光栅传感器 AK-MS15-TTLx20-ZZP1

音圈电机驱动器 ADP-090-09
开关电源 LRS-100-24

1. 2　 实验方案

　 　 为对不同振动频率下电连接器故障电弧特征进行分

析,本文利用 1. 1 节的实验平台开展振动条件下带变频

器三相异步电动机负载电路串联型故障电弧实验。 本文

设置变频器输出频率为 50
 

Hz,变频器载波频率为 8
 

kHz,
通过调节摩擦负载使工作电流分别保持在 12

 

A、13
 

A、
14

 

A、15
 

A、16
 

A,选择振动频率 5,6,…,29,30
 

Hz 进行实

验,具体的实验方案如表 2 所示,电流信号采样频率为

50
 

kHz,并在每组实验中提取 10 个样本,每个样本包含

5
 

000 个连续时间序列点,即共计 1
 

300 个样本作为初始

样本库。

表 2　 实验方案

Table
 

2　 Experimental
 

protocol
实验组号 工作电流 / A 电弧 振频 / Hz

1 ~ 5 12,13,14,15,16 无 0
6 ~ 30 12 有 5 ~ 30
31 ~ 55 13 有 5 ~ 30
56 ~ 80 14 有 5 ~ 30

81 ~ 105 15 有 5 ~ 30
106 ~ 130 16 有 5 ~ 30

1. 3　 实验结果分析

　 　 图 3 为表 2 中第 1 组实验的 12
 

A 实验波形及频谱

分析。 由于变频器 8
 

kHz 载波频率的影响,根据正常电

流频谱可以看出电流信号中存在载波频率整倍数的高频

谐波,导致时域波形存在很大畸变,并存在较多的尖峰

突变。

图 3　 实验正常波形与频谱

Fig. 3　 Experimental
 

normal
 

waveform
 

and
 

frequency
 

spectrum

图 4 所示回路电流为 12
 

A,在不同振频情况下产生

的故障电弧电流波形。 由图 4 可知,在音圈电机的作用

下,移动、固定电极逐渐分开,随之产生串联型故障电弧,
当分开距离较长时,间隙无法被击穿,此时接触点相当于

开路状态,电流近似为 0;当移动、固定电极在音圈电机

下逐渐靠近时,间隙又被重新击穿,产生故障电弧。 因此

随着移动电极的往复运动,可以明显看到因振动产生的

长时间电流零休现象。 从图 4 中不同振频故障波形对

比,发现随着振动频率越高,零休时间越短。 这是因为随

着振频的增加,移动电极往返的时间变短,动静电极间隙

更易被击穿,零休时长变短。
在实际工况中,回路电流、振动频率等因素都会影响

振动条件下故障电弧的零休时间,这种电流长时间零休

现象无法引起断相保护装置动作。 同时,三相异步电动

机不一定会经历完整的燃弧半周期,无法依据现有电弧

故障检测标准设计故障电弧检测装置。 综上所述,研究

机械振动条件下的工业电机变频器电路串联型故障电弧

检测方法是非常必要的。
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图 4　 不同振动频率下故障电弧电流分析

Fig. 4　 Analysis
 

of
 

fault
 

arc
 

current
 

at
different

 

vibration
 

frequencies

2　 振动串联故障电弧检测模型

2. 1　 算法简介

　 　 根据上述实验结果可知,振动条件下串联型故障电

弧回路电流具有长时间零休现象,因此本文提出构建滑

动记忆矩阵方法对电流信号进行动态保存,并通过 OD-
LTP 方法提取矩阵的纹理特征,统计两组 OD-LTP 图像

的灰度分布直方图数据并串联,得到 18 维特征向量,通
过基于沙猫群优化(sand

 

cat
 

swarm
 

optimization,SCSO)的

SVM 检测模型进行分类,实现对振动条件下串联型故障

电弧的快速检测。 检测模型流程如图 5 所示。

图 5　 检测模型流程图

Fig. 5　 Flow
 

chart
 

of
 

the
 

detection
 

model

2. 2　 特征提取方法

1)构建滑动记忆矩阵

在传统的特征提取方法中,通常选取固定周期的信

号,导致数据采集的实时性较差,本文提出通过构建滑动

记忆矩阵的方法对时域数据进行动态保存,减少提取的

数据量,处理方法如图 6 所示。 首先通过滑窗读取数据,
将采集的数据保存至矩阵第 1 行,如图 6 中①所示。 当

第 1 行数据填充完毕后将已保存的数据依次向下传递,
在第 1 行数据清空后继续进行数据的更新,如图 6 中②

至③过程所示。 这样可以在保障实时性的情况下,保留

更多的电流信号数据。 但滑窗的大小会影响提取数据的

实时性与准确度,矩阵的大小会影响计算时间,因此本文

在 3. 2 节对窗口与矩阵大小的选择进行分析。

图 6　 构建滑动记忆矩阵示意图

Fig. 6　 Construct
 

a
 

schematic
 

representation
of

 

the
 

sliding
 

memory
 

matrix

2)OD-LTP 算法

在常见的纹理特征提取方法中,局部二值化模式

(local
 

binary
 

pattern,LBP)类提取方法计算复杂度低,计
算简便可以满足检测的实时性要求。 局部三值化模式

(local
 

ternary
 

pattern,LTP)作为一种 LBP 的广义改进,通
过引入阈值 t 来调节 3×3 邻域窗口内中心像素点的上下

限,将周围的 8 个点数值分别与中心点上下限进行对比,
构成 8 位三进制数,即为该窗口中心点的 LTP 值。 对比

LBP,其保留了旋转不变性、灰度不变性等优点,加强了

对噪声的鲁棒性,但其特征维度过高,达到 38。
本文提出 OD-LTP 方法来提取纹理特征。 根据正交

方向将邻域内像素划分为两组,每组分别计算 OD-LTP
代码。 OD-LTP 计算示意图如图 7 所示。 首先按照数据

特征规定 4 个正方向,箭头指向为正方向,通过对比邻域

元素 g i 与邻域均值的 u ± t 的大小,得到数据梯度方向。
当关于中心元素对称的数据梯度方向相同,且都为正时

对应的数据编码为 2,都为负时对应的数据编码为 0,当
数据梯度方向相反时数据编码为 1。 具体的 OD-LTP 计

算公式如(1) ~ (3)所示。

图 7　 OD-LTP 计算示意图

Fig. 7　 Schematic
 

diagram
 

of
 

the
 

OD-LTP
 

calculation

OD - LTP = ∑
P
4

i = 1
SL(g i,g i + P

2
,u,t) × 3 i -1 (1)

SL(g i,g i + P
2

,u,t) =

2,g i - u ≥ t ∩ u - g
i + P

2
≥ t

1, | g i - u | ≤ t ∪ u - g
i + P

2
≤ t

0,g i - u ≤- t ∩ u - g
i + P

2
≤- t

ì

î

í

ï
ïï

ï
ï

(2)
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u =
∑

P

i = 0
g i

P + 1
(3)

式中: P代表邻域元素个数, g0 为中心元素, g i、g i + P
2
分别

代表邻域元素与其中心对称元素, u 代表邻域内所有元

素的均值。
本文的特征提取过程如图 8 所示,其中( a) ~ ( d)以

12
 

A 正常电流信号为研究对象,( e) ~ ( h)以振频 10
 

Hz
的 12

 

A 振动串联型故障电流信号为研究对象,并截取故

障发生前一周期至故障后半周期数据。 在将电流数据构

成滑动记忆矩阵后,通过 OD-LTP 算法对滑动记忆矩阵

中数据根据梯度方向进行编码,得到两幅 OD-LTP 图像,
并统计 OD-LTP 图像的灰度分布直方图数据,将两组直

方图进行串联,将得到 18 维直方图幅值作为特征向量。
从图 8(a) ~ (d)中可以看出,正常电流波形在电流波峰

波谷处存在少量乱序点,经过本文提取方法后,输出的

OD-LTP 可视化图像的像素点变换间隔均匀且有明显分

界线,输出的 18 维直方图中有 4 个维度超过 400,2 个维

度超过 100;从图 8( e) ~ ( h)中可以看出,振动故障电弧

波形在电流波形前段中谐波增加,导致输出的 OD-LTP
可视化图像的像素噪点变多,且变换间隔不均匀,分界线

不明显。 在电流波形后段区域,由于存在长时间零休现

象,在输出的 OD-LTP 可视化图像中产生较宽的灰色混

乱区域,导致 18 维直方图中对应的像素点为 4 和 13 的

幅值增加。 综上所述,通过 OD-LTP 算法可以有效提取

故障数据初步进入滑动记忆矩阵时期的特征。
由于不同的振动条件会导致故障电弧电流波形出现

变化,使得 OD-LTP 图像的像素点呈现一定规律,为验证

本文方法在不同振动条件下的有效性,截取故障发生前

半个周期至故障后一个周期的不同振动频率下的故障电

弧电流数据的完整时间序列作为初始信号,通过本文方

法对其进行特征提取,对得到的 OD-LTP 可视化图像进

行分析,可视化图像如图 9 所示。 由图 9 可知,随着振动

频率的增加,可视化图像中长零休时间对应的灰色混乱

区域逐渐变小,该现象与前文 1. 3 节所得结论相符,且依

然存在灰色区域使其与正常 OD-LTP 可视化图像有较大

区别,验证了 OD-LTP 算法对振动条件下串联型故障电

弧特征提取的准确性。
2. 3　 SCSO-SVM 分类算法

　 　 SVM 是一种广义线性分类器,通过监督学习找到一

个可以分离事件的最佳分类面,对数据进行二值分类。
其与传统的机器学习方法相比,SVM 算法计算复杂度

低,其在求解非线性和多维样本分类问题方面具有很大

的优势,且实时性好。
在使用 SVM 模型时,惩罚因子 c 决定了对错分样本

的惩罚力度,核参数 g 决定了核函数的影响范围,这两者

图 8　 特征分析例图

Fig. 8　 Example
 

diagram
 

of
 

feature
 

analysis

图 9　 不同振动条件下 OD-LTP 可视化图像

Fig. 9　 Visual
 

images
 

of
 

OD-LTP
 

under
different

 

vibration
 

conditions

共同影响了模型的泛化能力。 因此需要找到合适的算法

对这两个参数进行寻优,使得模型的泛化能力达到最优。
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本文选择沙猫群优化算法对 SVM 进行参数优化,并
在后文进行对比分析。 沙猫群优化算法是一种模仿自然

界中沙猫攻击行为和搜寻行为的智能优化算法,基本算

法的参数设置如式(4) ~ (6)所示。

rG = SM -
SM × t
tmax

( ) (4)

R = 2 × rG × rand - rG (5)
r = rG × rand (6)
其中, SM 取 2, t 为当前迭代次数, tmax 为最大迭代次

数, rG 随着迭代次数的增加由 2 线性递减至 0。 R 为选择

使用搜索行为或攻击行为的参数。 r 表示每只沙猫的灵

敏度范围。 rand 为 0 ~ 1 之间的随机数。
Pr =| rand × P t

bc - P t
c | (7)

P t +1
c = P t

c - r × Pr × cos(θ) (8)
P t +1

c = r × (P t
bc - rand × P t

c) (9)
攻击行为的数学模型公式如式(7) 和(8) 所示, Pr

为最优个体附近的一个随机个体, P t
bc 为当前最优个体,

P t
c 为当前迭代个体。 θ 是 0° ~ 360°之间的随机角度。 搜

寻行为的数学模型如式(9)所示,新位置在最优个体和

当前迭代个体之间,其中灵敏度 r 保证了搜寻行为的收

敛效果和复杂度。

3　 检测模型优化分析

3. 1　 阈值选择

　 　 本文所提出的 OD-LTP 算法根据阈值 t 来改变邻域

均值 u 的数据宽度,减少高频谐波对数据的影响,但 t 的
取值会影响后续判断的结果。 因此本文统计长时间零休

区域电流信号中相邻数据点间的幅值差,寻找 t 的适宜

大小。 部分幅值差散点图如图 10 所示。 结果表明在 0 ~
0. 9 范围内的数据占统计数据的 91. 8%,同时在后续分

析中证明 0. 9 为最佳阈值大小。

图 10　 相邻误差散点图

Fig. 10　 Scatter
 

plot
 

of
 

the
 

adjacent
 

errors

3. 2　 窗口及矩阵尺寸分析

　 　 根据前文分析可知,不同的滑动窗口尺寸影响算法

的准确度与实时性,本文需要对滑窗尺寸与矩阵大小进

行分析。 本文截取采样频率为 50
 

kHz 的电流信号一个

周期时序数据,即 1
 

000 个数据点为基准进行初始分析,
滑窗尺寸分别选取 24,30,36,42,45,48,54。 为结合数据

的采集时间进行综合考虑,本文保留在故障电流数据逐

行填充过程中产生的系列矩阵,并将其按照零休时间填

充行数分别作为故障样本进行分析。 设定当准确度为

95%以上时,认为电弧故障可以识别;当准确度为 99%以

上时,认为电弧故障完全识别,并将对应的故障数据的填

充点数分别命名为 N1、N2,代表着数据填充时间,分析结

果如表 3 所示。 从表 3 中可知,模型准确度达到可以识

别时,滑窗大小为 42 对应的 N1 最小;模型准确度达到完

全识别时,滑窗尺寸为 45 与 36 时对应的 N2 最小。 在考

虑 N1、N2 因素之外,当完全识别故障对应的填充层数较

高时,容易导致模型在较低填充层数时发生误判,因此为

减少误判概率,填充层数也是影响因素之一。 综合以上

因素,本文选择 45 作为方法的滑窗尺寸。
表 3　 滑窗大小准确度分析

Table
 

3　 Accuracy
 

analysis
 

of
 

the
 

sliding
 

window
 

size
滑窗

尺寸

故障数据可以识别

填充点数 N1

测试准

确度 / %

故障数据完全识别

填充点数 N2

测试准

确度 / %
24 8×24 = 192 95. 3 \ \
30 5×30 = 150 95. 6 7×30 = 210 99. 2
36 4×36 = 144 97. 3 5×36 = 180 99. 4
42 4×42 = 126 95. 3 5×42 = 210 99. 6
45 3×45 = 135 97. 6 4×45 = 180 99. 7
48 3×48 = 144 98. 2 4×48 = 192 99. 8
54 3×54 = 162 98. 6 4×54 = 216 99. 8

　 　 由于矩阵的大小影响信息保存和计算速度,需进一

步对矩阵的大小进行分析。 本文选取滑窗尺寸为 45 对

应的可以识别数据样本,对矩阵行数进行依次减少分析,
其分析结果如图 11 所示。 随着矩阵行数的减少,矩阵包

含的数据数量减少,OD-LTP 算法的计算时间减少,但准

确度呈现先上升后下降的趋势,在矩阵尺寸为 45×12 时

准确度达到 98. 6%。 因此结合准确率及计算时间,滑动

记忆矩阵大小应选择为 45×12。

图 11　 不同矩阵尺寸对比图

Fig. 11　 Scatter
 

plot
 

of
 

the
 

adjacent
 

errors

3. 3　 采样频率对比分析

　 　 本文根据采样频率的降低,对窗口尺寸进行等比例

缩减使每行数据填充时间一致,例如:当采样频率由
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50
 

kHz 变为 30
 

kHz 时,窗口尺寸由 45 变为 27。 同时将

不同填充层数的数据混合训练,对比分析不同采样频率

下的准确度与计算速度,识别结果如图 12 所示。 随着采

样频率的降低,进一步减少了噪声的影响,同时由于矩阵

点数降低,加强了计算速度。 而 10 与 20
 

kHz 因为采样

点过少,使关键信息丢失过多,易受到谐波影响,导致准

确率降低。 因此由图 12 可知在不同采样频率下,30
 

kHz
采样频率及其对应的 27×12 矩阵尺寸为最优。

图 12　 不同采样频率对比图

Fig. 12　 Scatter
 

plot
 

of
 

the
 

adjacent
 

errors

由于采样频率的改变,可能导致最优矩阵尺寸参数

发生变化,同时考虑到窗口参数、矩阵参数与采样频率的

潜在耦合因素,因此本文在 30
 

kHz 采样频率下,以矩阵

尺寸为 27×12 为基础,对窗口、矩阵尺寸进行验证,同时

选取 40
 

kHz、20
 

kHz 的部分窗口尺寸,做进一步对比,部
分结果如表 4 所示,其中第 1 ~ 9 组对应 30

 

kHz 采样频

率,第 10 ~ 13 组对应 40
 

kHz 采样频率,第 14 ~ 15 组对应

20
 

kHz 采样频率。 由表 4 可知,在 30
 

kHz 采样频率下,
所选矩阵尺寸 27×12 为最优,且在 40

 

kHz、20
 

kHz 采样

频率下的部分尺寸中得到验证。 因此在后续分析中使用

30
 

kHz 作为最终采样频率,同时选择 27×12 为最终滑动

记忆矩阵大小。
表 4　 不同采样频率、窗口、矩阵尺寸综合对比分析

Table
 

4　 Comprehensive
 

comparative
 

analysis
 

of
 

different
sampling

 

frequencies
 

and
 

window
 

matrix
 

sizes
组号 采样频率 矩阵尺寸 准确度 / % 数据量

1
2
3
4
5
6
7
8
9

30
 

kHz

24×9 96. 1 216
24×12 97. 4 288
24×15 97. 3 360
27×9 98. 3 243
27×12 99. 2 324
27×15 98. 7 405
30×9 98. 7 270
30×12 98. 9 360
30×15 97. 8 450

10
11
12
13

40
 

kHz

36×9 98. 6 324
36×15 98. 1 540
39×9 98. 7 351
39×12 98. 5 468

14
15

20
 

kHz
18×9 97. 6 162
18×15 97. 2 270

3. 4　 分类算法对比分析

　 　 为验证本文提出优化分类算法的优越性,本文采用

模拟 退 火 ( simulated
 

annealing, SA ) 算 法、 遗 传 算 法

(genetic
 

algorithm,GA)和粒子群优化算法分别对 SVM 进

行了优化,并与 SCSO 优化算法进行了比较。 SA、GA 和

PSO 分别属于个体启发式算法、进化算法和群体智能算

法,设置 SA 的参数长度为 50, SCSO-SVM、 GA-SVM 和

PSO-SVM 的最大迭代次数为 100 次,GA-SVM
 

和 SCSO-
SVM 的种群大小为 10 次。 参数 c 的迭代范围从 0. 1 ~
1

 

000,参数 g 的值从 0. 1 ~ 1
 

000。 在上文窗口矩阵尺寸

为 27×12 的样本库中分别随机抽取 500 组训练样本和测

试样本,不同类型 SVM 的识别结果如表 5 所示。 由表 5
可知,通过 SCSO-SVM 相对于其他优化方法分类准确度

最高。
表 5　 分类算法分析

Table
 

5　 Analysis
 

of
 

the
 

classification
 

algorithms
方法 准确度 / %

PSO-SVM 98. 2
SCSO-SVM 99. 6

SA-SVM 98. 6
GA-SVM 96. 4

4　 算法在不同实验条件、故障条件下的适
用性

4. 1　 检测模型泛化性分析

　 　 由于在不同的工业条件下,三相异步电动机的电路

参数也会不同,例如三相异步电机额定频率为 50 或

60
 

Hz,变频器工作频率可以在 0
 

Hz 到额定频率之间进

行调节,以实现电机转速的控制;对于一个常见的变频器

应用,载波频率通常在 6 ~ 12
 

kHz,具体数值会根据需要

进行调节以实现最佳的 PWM 控制效果。 在之前的分析

中,变频器参数为输出频率 50
 

Hz,载波频率 8
 

kHz,因此

本文将通过改变变频器参数,对检测方法进行泛化性分

析,结果如表 6 所示。
表 6　 不同工况下检测方法泛化性分析

Table
 

6　 General
 

generalization
 

analysis
 

of
 

detection
methods

 

under
 

different
 

working
 

conditions
组号 有无变频器 载波频率 / kHz 输出频率 / Hz 准确度 / %

1 无 \ \ 99. 6
2 有 6 50 99. 4
3 有 8 50 99. 2
4 有 10 50 96. 3
5 有 12 50 93. 4
6 有 8 40 95. 4
7 有 8 60 98. 8
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　 　 根据表 6 第 1 组实验可知,无论三相异步电动机是

否带变频器运行,都可通过本方法检测由机械振动引发

的串联型电弧故障。 根据第 2 ~ 5 组实验可知,增加变频

器载波频率,将引入更多高频噪声,使检测方法准确度降

低。 当载波频率为 12
 

kHz 时,谐波过多,波形畸变严重,
在实际应用中可以通过滤波元件进行辅助,提高准确度。
根据第 3、6、7 组实验可知,当降低变频器输出频率时,回
路电流周期发生变化,相对应本算法包含的数据点数也

会发生改变,影响了检测方法准确度。 综上所知,变频器

载波频率为 6 ~ 10
 

kHz 和变频器输出频率为 40 ~ 60
 

Hz
时,本文提出的检测方法都是有效的。
4. 2　 与其他检测方法对比分析

　 　 为了验证所提出的特征提取方法的优越性,以实验

所得 30
 

kHz 采样频率数据为研究对象,使用以下特征提

取方法并根据对应参考文献内容处理样本,并与本文所

提特征提取方法进行对比分析:
1)文献[3]:对电流信号从时域,频域和小波包能量

分析方面多个方向提取特征,构建 24 维特征集,并通过

随机森林算法选取关联性最高的 10 个特征;
2)文献[13]:对电流信号进行变分模态分解,并计

算所得 8 个信号分量的样本熵与能量作为最终特征

向量;
3)文献[12]:使用核主成分分析提取电压信号、故

障相电流信号第 5 和 6 个主成分的峰度和偏度作为

特征;
4)文献[14]:对电流信号进行小波包分解后,将 32

个频段信号幅值拼接为灰度-梯度共生矩阵,并计算其 15
个特征量作为特征;

5)文献[16]:对电流信号进行 5 层经验小波分解,
对每层信号建立步长为 35 的信号延迟矩阵,并将所得 5
个矩阵的前两个奇异值作为串联型故障电弧特征;

6)文献[9]:将电流信号转换为无阈值递归图,并使

用 GLCM 提取 21 个图像纹理特征作为串联型故障电弧

特征;
将上述方法提取的特征通过 SCSO-SVM 进行分类,

训练集与测试集占比为 4 ∶ 1,分析结果如表 7 所示。 方

法 1 准确度最高,但其特征提取时间相对于本文算法时

间较长。 方法 2 使用 2 个周期的电源电压与电流信号进

行降维提取特征,数据量多输出特征量少,但准确度最

低。 方法 3 准确度较高但提取时间过长。 方法 4 ~ 6 将

电流信号转为多维信号进行处理,其中方法 5 的特征提

取时间较短,但其在噪声影响下其准确度较低,而其余方

法的特征提取时间较长。 表 7 表明,本文方法与其他方

法对比,所需数据量最少,分类准确度较高,特征提取运

算时间最短。 同时,本文方法所需数据按照滑动记忆矩

阵提取,不同于其他方法固定数据长度,故障数据收集时

间更短。 因此本文方法可以很好地实现对振动条件下串

联型故障电弧的快速特征提取与检测。

表 7　 不同特征提取方法对比

Table
 

7　 Comparison
 

of
 

different
 

feature
extraction

 

methods
识别

方法
单样本数据量 特征量

样本平均特征提

取时间 / ms
准确度 / %

1 1
 

200 10 35. 8 99. 4
2 2

 

400 4 96. 9 84. 4
3 1

 

200 16 87. 7 98. 8
4 1

 

200 15 111. 6 98. 2
5 1

 

200 10 11. 3 97. 4
6 1

 

200 21 437 98. 4
本文方法 324 18 1. 64 99. 2

5　 总　 结

　 　 本文针对振动条件下三相异步电动机变频器负载的

串联型故障电弧检测问题,提出了一种具有高实时性的

振动条件下故障电弧检测模型。 本文采用滑动记忆矩阵

的动态信号提取策略,显著提升了回路电流数据处理的

效率与实时性;运用 OD-LTP 特征提取方法,有效削弱了

回路电流中的高频谐波干扰,同时保证了计算的高效性

与精确性;并利用 SCSO 算法优化 SVM 分类器,以提高故

障电弧识别的准确率。 通过在不同工况下的实验验证,
以及与其他检测模型的对比分析,证明本文所提方法在

电机变频器类负载故障电弧检测方面的准确性、实时性

与通用性。 此外,本文方法的低计算成本为微处理器的

实时处理提供了有力支持。 未来,研究将聚焦于实际电

机振动环境下的故障电弧实验及微处理器应用,致力于

开发振动条件下电机变频器负载的串联故障电弧检测

装置。
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