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摘　 要:相对定位是实现多机器人编队、探索救援等协作任务的前提。 针对卫星信号受阻、未知无基础设施环境中机器人间的

相对定位问题,提出一种基于超宽带(ultra-wideband,
 

UWB)方位的相对定位方法。 利用滑动窗口截取一段时间内机器人间观

测方位和运动轨迹,构建方位代价函数,通过最小化代价函数估计机器人间的相对位姿。 然而,
 

函数的非凸性导致传统优化算

法陷入局部最优解,因此,采用麻雀搜索算法(SSA)对代价函数进行求解,实现机器人间的相对定位。 为减少 UWB 方位测量误

差对定位结果的影响,通过后端图优化算法融合 SSA 估计位姿和里程计信息,实现更加精准的相对定位。 实验结果表明,该方

法在 12
 

m×6
 

m 的室内环境中,能够达到 0. 32
 

m 的平均位置误差以及 2. 1°的平均旋转误差。
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Abstract:
 

Relative
 

localization
 

is
 

a
 

prerequisite
 

for
 

multiple
 

robots
 

in
 

unknown
 

environments
 

to
 

accomplish
 

collaborative
 

tasks
 

such
 

as
 

formation,
 

exploration,
 

and
 

rescue.
 

A
 

relative
 

localization
 

method
 

based
 

on
 

ultra-wideband
 

( UWB)
 

bearing
 

is
 

proposed
 

for
 

positioning
 

between
 

robots
 

in
 

unknown
 

infrastructure-free
 

environments
 

where
 

satellite
 

signals
 

are
 

blocked.
 

The
 

proposed
 

method
 

uses
 

a
 

sliding
 

window
 

to
 

intercept
 

the
 

inter-robot
 

bearing
 

observations
 

and
 

motion
 

trajectories
 

over
 

a
 

period
 

of
 

time,
 

construct
 

the
 

bearing
 

cost
 

function,
 

and
 

estimate
 

the
 

relative
 

pose
 

between
 

the
 

robots
 

by
 

minimizing
 

the
 

cost
 

function.
 

However,
 

the
 

non-convexity
 

of
 

the
 

function
 

leads
 

traditional
 

optimization
 

algorithms
 

to
 

fall
 

into
 

local
 

optimal
 

solutions.
 

Therefore,
 

sparrow
 

search
 

algorithm
 

(SSA)
 

is
 

used
 

to
 

optimize
 

the
 

cost
 

function
 

for
 

the
 

relative
 

localization
 

between
 

robots.
 

To
 

reduce
 

the
 

effect
 

of
 

UWB
 

bearing
 

measurement
 

errors,
 

the
 

SSA-estimated
 

pose
 

and
 

odometry
 

information
 

are
 

fused
 

by
 

a
 

back-end
 

pose
 

graph
 

optimization
 

algorithm
 

to
 

achieve
 

more
 

accurate
 

relative
 

positioning.
 

The
 

experimental
 

results
 

show
 

that
 

the
 

method
 

is
 

able
 

to
 

achieve
 

an
 

average
 

translation
 

error
 

of
 

0. 32
 

m
 

and
 

an
 

average
 

rotation
 

error
 

of
 

2. 1°
 

in
 

an
 

indoor
 

environment
 

with
 

a
 

size
 

of
 

12
 

m×6
 

m.
 

Keywords:relative
 

localization;
 

bearing;
 

sliding
 

window;
 

SSA;
 

pose
 

graph
 

optimization

0　 引　 言

　 　 近年来,多机器人系统由于其较强的可扩展性和鲁

棒性,在多机器人编队[1] 、未知环境探索[2] 和协作地图构

建[3] 等方面取得了广泛的研究。 为了正确执行每个子任

务并协同完成整个任务,团队中的机器人应处于一个共

同的参考框架中估计彼此的位姿。 当使用一些外部参考

系, 例 如 全 球 定 位 系 统 ( global
 

positioning
 

system,
 

GPS) [4] 、超宽带定位系统[5] 或先验地图时,可根据每个
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机器人的全局位姿推算出相对位姿。 但是由于外部环境

的限制(如隧道、未知的室内环境),这些参考系并不总

是可用的。 因此,在未知环境中,利用机载传感器估计机

器人间的相对位姿是必要的。
同步定位与地图构建( simultaneous

 

localization
 

and
 

mapping,
 

SLAM)技术[6] 提供了一种有效的解决方案,可
以协助机器人在未知环境中定位并构建环境地图。 在一

个多机器人系统中,机器人可以通过匹配子地图特征点

的方式估算相对位姿。 然而,在面对一些具有相似特征

的场景(如长走廊,交叉路口)时,易出现“感知混淆” [7]

的情况,导致机器人间产生错误闭环。 为减少机器人间

异常闭环对位姿估计的影响,Chang 等[2] 在 LAMP
 

2. 0 中

提出基于 GNC(graduated
 

non-convexity) [8] 的方法剔除机

器人间的异常闭环。 但是,将每个机器人生成的激光子

地图上传到服务器中进行位姿估计,需要消耗大量通信

带宽,不适用于实际的多机器人系统。
有学者提出利用机器人间的距离[9-10] 、方位[11-12] 信

息进行相对定位,与基于 SLAM 技术的相对定位相比,可
以摆脱对环境特征的依赖,更加适合未知环境中机器人

间的相对定位。 Fishberg 等[10] 提出通过单个机器人携带

多个 UWB 节点的方式,在通信受限的条件估计机器人间

的相对位姿,但受 UWB 测量噪音的影响,同一台设备上

UWB 节点间需要一定的间隔其距离测量才会有明显区

分,所以需要较大的安装空间,这对于一般的中小型机器

人并不适用。 Wang 等[11] 提出利用无人机的飞行轨迹和

匿名方位测量估计相对位姿,将无人机间的相对定位问

题建模为混合整数二次约束二次规划问题并采用半定规

划的方法进行优化求解。 Tian 等[12] 提出通过扩展卡尔

曼滤波融合里程计和机器人间方位信息估计相对位姿,
但只在仿真环境中进行了初步验证,尚未进行实物验证。
Zhou 等[13] 提出涵盖距离和方位测量的解析解,但更多的

是从理论上分析方案的可行性且只考虑了最小测量,所
以在噪声影响下定位误差比较大。 因此,如何利用有限

的观测信息实现机器人间的相对定位,成为一项热点

研究[14] 。
相比于距离测量,方位测量的优势在于其对目标具

有出色的定向能力,可以帮助确定目标相对于参考点的

方向。 相机[15] 凭借高帧率及分辨率的特点捕获目标在

图像中的坐标,并通过相机的逆投影模型确定目标相对

于相机的方位。 然而,当图像中具有多个外观相似的目

标时,仅依靠目标检测无法有效确定目标的身份,需要进

行复杂的“数据关联” [11-12,15] ,此外,相机受环境中光照强

度的影响较大。 蓝牙 5. 1 规范支持了寻向定位的功能,
与基于信号强度的定位方法相比,基于蓝牙方位可以实

现更高的定位精度[16] ,但存在抗干扰能力差,定位范围

小的缺点。 UWB 因具有测量精度高、范围广、功耗低的

特点被广泛应用于定位。 Botler 等[17] 比较了 UWB 和蓝

牙的测向性能,结果表明,相比于蓝牙,UWB 具有更高的

测向精度且在面对多径效应和非视距影响时更具鲁棒

性,最近的研究[18] 证明了利用 UWB 方位测量进行定位

的可行性,但这些方法均需要在环境中部署基站,并不适

用于未知环境中作业的机器人。
针对卫星信号受阻、未知无基础设施环境中机器人

间的相对定位,本文提出一种基于超宽带方位的相对定

位方法,利用 UWB 测量方位与机器人自带的轮式里程

计,在无固定基站和先验地图的情况下,估算机器人间的

相对位姿。 本文的主要贡献如下:1)提出一种利用短期

UWB 方位测量和运动轨迹估计机器人间相对位姿的方

法,为避免陷入局部最优解,采用麻雀搜索算法进行优化

求解。 2)提出一种基于图优化的后端优化算法,对麻雀

搜索算法优化后的位姿进行约束,降低 UWB 方位测量误

差的影响,进而获得更加准确的位姿估计。 3)在 12
 

m×
6 m 的真实环境中验证算法,结果表明,能够达到 0. 32 m
的平均位置误差以及 2. 1°的平均旋转误差。

1　 问题描述

　 　 如图 1 所示,移动机器人 α、β 在未知环境中随机移

动,每个机器人通过里程计估计自身运动状态,且在整个

运动过程中,机器人 α 可以测量到机器人 β 相对于自身

的方位。 为方便描述,用 b t
α,β 表示 t 时刻机器人 α 测量到

机器人 β 相对于自身的方位角, B t
α,β = [cos(b t

α,β),
sin(b t

α,β)] T 表示测量方向的单位向量。 用 x t
α = (x t

α,y t
α,

θt
α,) 表示 t 时刻由机器人 α 里程计测量到的位姿,其中

x t
α 和 y t

α 为机器人二维平面坐标, θt
α 为机器人旋转方向。

用 P t
α = [x t

α,y t
α] T 表示机器人 α 在 t 时刻的位置向量,

R t
α =

cos(θt
α) - sin(θt

α)

sin(θt
α) cos(θt

α)
é

ë

ê
ê

ù

û

ú
ú

表示机器人 α 旋转角度为

θt
α 时的旋转矩阵。 xk,i

α 表示机器人 α 在 i 时刻相对于 k 时

刻的位姿。 x t
α,β = (x t

α,β,y
t
α,β,θ

t
α,β) 表示机器人 β 在 t 时刻

相对于机器人 α 的位姿, x t
α,β 和 y t

α,β 为相对位置, θt
α,β 为

相对旋转角度。 本文的目标是在没有任何先验信息的条

件下,利用机器人里程计测量信息 x t
α、x t

β 及观测方位

b t
α,β,估计机器人 β 相对于机器人 α 的位姿 x t

α,β 。

2　 基于 UWB 方位的相对定位算法设计

　 　 本文提出基于 UWB 方位的机器人间相对定位算法

框架如图 2 所示。 首先,利用滑动窗口截取一段时间内

机器人运动轨迹及 UWB 方位测量数据,构建代价函数,
通过最小化代价函数的方式估计机器人间相对位姿。 其
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图 1　 基于 UWB 方位的机器人间相对定位示意图

Fig. 1　 Illustration
 

of
 

the
 

robot
 

relative
 

localization
based

 

on
 

UWB
 

bearing

　 　 　 　

次,采用麻雀搜索算法对该函数进行求解,得到相对位姿

x- tα,β 。 需要注意的是,为加快求解速度,本文用当前时刻

的方位测量角 b t
α,β 对搜索空间进行限制。 最后,利用机

器人的里程计信息对 x- tα,β 进行约束,并通过后端图优化

算法估计出更加精确的相对位姿 x t
α,β 。 下面将分 3 个部

分对本文方法进行详细描述。
2. 1　 基于滑动窗口构建代价函数

　 　 在本文中,机器人间唯一的观测信息为方位信息,但
是仅靠单组方位测量无法进行相对定位,要实现相对定

位需要记录多组机器人在不同位置时的方位测量。 因

此,本文通过滑动窗口截取一段时间内的方位数据及机

器人运动轨迹构建方位代价函数,实现机器人间的相对

　 　 　 　

图 2　 算法框架图

Fig. 2　 Algorithm
 

framework
 

diagram

定位。 为降低计算量提高计算效率,设置滑动窗口的时

间长度为 w。 通过最小化滑动窗口内不同时间方位测量

的残差可以求出最佳相对位姿 x- tα,β :

argmin
x-tα,β

∑
t

k = t -w
e(x- tα,β ,x t

α,x t
β ,xk

α,xk
β ,bk

α,β) =

argmin
x-tα,β = (P-tα,β,R-tα,β)

∑
t

k = t-w
‖Bk

α,β - (Rk
α)T(

R- t α,βP
t,k
β +P- tα,β - Pt,k

α

‖R- tα,βP
t,k
β +P- tα,β - Pt,k

α ‖
)‖

(1)
其中, e(·) 表示在给定相对位姿 x- tα,β 下,计算估计

方位与 UWB 测量方位的残差函数。 ‖·‖表示向量的

二范数。 通过最小化式(1),可以估计出相对位姿 x- tα,β 。
然而,由于式(1) 具有非凸性,当使用一些局部优化方

法,如列文伯格-马夸尔特、高斯牛顿等,在没有良好初值

的情况下,极易陷入局部最优解,进而影响定位精度,因
此本文采用麻雀搜索算法进行优化求解。
2. 2　 麻雀搜索算法估计相对位姿

　 　 麻雀搜索算法 ( sparrow
 

search
 

algorithm,
 

SSA) 于

2020 年由 Xue 等
 [19] 首次提出,相比于其他群智能优化算

法,具有调节参数少、收敛速度快、鲁棒性强等优点。 在

SSA 算法中,根据麻雀捕食与反哺机制,将麻雀种群分为

发现者、跟随者和警戒者。 设种群中存在 n 只麻雀,则麻

雀 i ( i = 1,2, …,n) 在 d 维空间中的位置表示为 X i =
[x i,1, x i,2, …,x i,d] ,其适应度表示为 f(X i) 。

在麻雀种群中,由适应度高的麻雀担任发现者,负责

为整个种群寻找食物,剩余的麻雀则跟随发现者寻找食

物。 发现者与跟随者的角色根据个体适应度动态变化,
但在种群中所占比例不变。 发现者有两种飞行模式,当
周围没有危险时( W < ST ),发现者执行广泛的搜索,当
发现危险时,则向种群发出警报并移动到安全区。 其位

置更新如下:

X iter+1
i,j =

X iter
i,j ·exp - i

a·itermax
( ) , W < ST

X iter
i,j + Q·L,其他

ì

î

í

ïï

ïï

(2)

其中, W ∈ [0,1] 为随机数, ST ∈ [0. 5,1] 为固定

值,分别表示预警值和安全阈值。 iter 为当前迭代次数,
itermax 表示最大迭代次数。 X iter

i,j 表示在第 iter次迭代麻雀 i
在第 j 维的值 ( j = 1,2,…,d)。 a ∈ [0,1] 为随机数,Q
是服从正态分布的随机数,L 为 1×d 的全 1 矩阵。

除发现者以外的麻雀为跟随者,其任务是跟随发现

者寻找食物。 其位置更新如下:

X iter+1
i,j =

Q·exp
X iter

worst - X iter
i,j

i2( ) ,i > n
2

X iter+1
pbest + X iter

i,j - X iter+1
pbest ·A +·L,其他

ì

î

í

ïï

ïï
(3)

其中, X iter+1
pbest 表示适应度最高的发现者占据的位置,

X iter
worst 表示适应度最差的麻雀占据的位置,A 为 1×d 的矩

阵,其值随机赋值为 1 或-1, A + = AT(AAT) -1。 当 i > n
2
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时,表明当前区域的食物不能满足麻雀 i 的生存需要,因
此需要放弃对发现者的跟随并飞往其他地方觅食;否则,
在发现者附近随机选择一个地方进行觅食。

在觅食过程中,一些麻雀会被选为警戒者,以避开捕

食者。 当意识到危险时,它们能够及时调整在种群中的

位置。 警戒者占种群数量的 10% ~ 20%,其位置更新

如下:

X iter+1
i,j =

X iter
best + φ· X iter

i,j - X iter
best ,f i > fg

X iter
i,j + K·

X iter
i,j - X iter

worst

f i - fw( ) + ε( ) ,f i = fg

ì

î

í

ï
ï

ïï

(4)

其中, X iter
best 为当前适应度最高个体, φ 是一个步长控

制参数,服从标准正态分布; K ∈ [ - 1,1] 是一个随机

数; ε 是一个非常小的常数,其作用是避免分母为 0。 f i 为
当前个体适应度, fg 和 fw 分别是当前全局最佳和最差的

适应度值。 当 f i > fg 时,表明处于边缘的麻雀,极易成为

捕食者的攻击目标。 当 f i = fg 时,表明处于种群中间的麻

雀意识到了危险,需要向其他麻雀靠近。
结合式(1)所求优化问题,设置种群规模 n = 30,发

现者的比例 20%,警戒者比例 10%,安全阈值 ST = 0. 8。
构建一个 3 维(x- tα,β,y- tα,β,θ- t

α,β )的解域空间,如图 3( a)所

示,空间中每个点的位置即为寻优过程的解。 为加快迭

代过程中种群收敛速度,本文用当前时刻的方位测量角

b t
α,β 对麻雀种群的搜索空间进行限制。 在理想情况下,

可认为当前时刻机器人 β 在以机器人 α 为中心,角度为

b t
α,β 的射线上,则 x- tα. β,y- tα. β 满足以下关系:

b t
α,β - arctan2(y- tα,β,x- tα,β) = 0 (5)

其中,arctan2(·)是值域为[ -π,π]的反正切函数。
但是,由于实际中 UWB 方位测量易受噪音影响,在噪音

影响下,式(5)不一定成立。 因此,引入方位误差因子 λ,
在满足以下约束的情况下展开搜索:

b t
α,β - arctan2(y- tα,β,x- tα,β) < λ

θ- t
α,β ∈ [ - π,π]{ (6)

此时,麻雀种群的搜索空间如图 3( b)所示,从俯视

图的投影来看, x- tα. β 和 y- tα. β 被限制在角度为 b t
α,β 的射线附

近(虚线之间),与原先在整个三维搜索空间相比,大大

减小了搜索区域,可在有限迭代次数内,提高搜索精度。
其中,λ 与测量噪音有关,理想情况下 λ = 0。 通过求解

x- tα,β,y- tα,β,θ- t
α,β ,即可得到相对位姿 x- tα,β 。

2. 3　 基于图优化的相对位姿估计

　 　 通过上节 SSA 算法对式(1) 进行求解,可以利用短

期机器人移动轨迹及 UWB 方位测量估算出机器人间的

相对位姿 x- tα,β ,但是受多径信号、天线间干扰及安装平台

的影响[20] ,UWB 测量角度存在不规则波动,这些测量角

度误差将直接导致定位误差。 例如,在距离基站仅 4 m
的地方,5°的测量误差可直接转化为大于 30

 

cm 的位置

图 3　 种群搜索空间示意图

Fig. 3　 Illustration
 

of
 

the
 

population
 

search
 

space

误差(4×sin(5°)≈0. 35)
 

。
因此,本文提出一种基于图优化的后端优化方法,利

用里程计在相邻时间比较准确的特性,对 SSA
 

优化后的

相对位姿 x- tα,β 进行约束。 以机器人 α 的位姿 x t
α 为参考,

通过机器人间的相对位姿 x- t
α,β ,将机器人 β 的位姿映射

到机器人 α 的坐标系中,并将其作为图优化的顶点。 分

别将两个机器人里程计测量的相邻时刻的位姿变换

xk-1,k
α ,xk-1,k

β 作为每个机器人的里程计约束边,并将 x- tα,β

作为机器人间的约束边,构建一个以机器人 α 为参考的

图优化问题。 其具体公式为:

argmin
x

∑
t

k = t0

e xk-1
α ,xk

α,xk-1,k
α( ) TΩk

α e xk-1
α ,xk

α,xk-1,k
α( )üþ ýï ï ï ï ï ï ï ï ï ï ï ï ï ï

机器人α里程计约束

+

∑
t

k = t0

e xk-1
β ,xk

β ,xk-1,k
β( ) TΩk

β e xk-1
β ,xk

β ,xk-1,k
β( )üþ ýï ï ï ï ï ï ï ï ï ï ï ï ï ï

机器人β 里程计约束

+

∑
t

k = t0

e xk
α,xk

β ,x-kα,β( ) TΩk
α,β e xk

α,xk
β ,x-kα,β( )üþ ýï ï ï ï ï ï ï ï ï ï ï ï

机器人间相对位姿约束

(7)

其中, t0 为定位的起始时间, e(·) 表示误差函数。
Ωk

α,Ωk
β 表示机器人里程计约束的信息矩阵,为协方差矩

阵的逆。 Ωk
α,β 为机器人间相对位姿约束的信息矩阵,由
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于不能确定其相关项的具体协方差数值,所以设为常数。
当相应的位姿图构建完成后, 通过 g2o ( general

 

graph
 

optimization) [21] 图优化算法对式(7)进行优化求解,可以

得到每个机器人在不同时刻的位姿,再根据相对位姿变

换关系得到比较精确的相对位姿 x t
α,β 。

3　 实验与结果分析

3. 1　 实验设置

　 　 本文利用如图 4 所示的两台 TurtleBot2 机器人进行

实验。 机器人 β 携带一个型号为 Nooploop
 

LinkTrack
 

的

UWB 标签,其最大通信距离为 120
 

m,数据更新频率为

50
 

Hz。 机器人 α 携带型号为
 

Nooploop
 

LinkTrack 的

UWB 基站,其测量角度误差为 5°。 由于单个基站的测角

范围为 150°,存在非视场问题[18] ,因此,本文利用 4 个基

站进行全方位角度测量。 两机器人的里程计均为两轮差

分式驱动,输出频率为 20
 

Hz。 另外,每台机器人搭载一

台笔记本电脑,用于运行 ROS( robot
 

operation
 

system)系

统,实现数据的传输与采集。

图 4　 实验平台

Fig. 4　 Experimental
 

platform

实验场景如图 5 所示,环境中存在若干障碍物,且机

器人 α 和 β 从不同位置出发。 为验证本文算法精度,机
器人分别搭载 Hokuyo 和 Rplidar 激光雷达,用于实现自

适应蒙特卡洛定位
 

( adaptive
 

Monte
 

Carlo
 

localization,
 

AMCL) [22] 。 将 AMCL 所得位姿作为机器人的真实位姿,
然后根据真实位姿推算出相对位姿与所提算法估计位姿

进行比较,并通过均方根误差 ( root
 

mean
 

square
 

error,
RMSE)衡量机器人定位精度。
3. 2　 实验 1

 

　 　 在实验 1 中,机器人的运行轨迹如图 6 所示,两台机

器人分别以 0. 2
 

m / s 的速度沿着两个矩形移动,但是随

着运动距离的增加,两机器人的里程计都发生了不同程

度的漂移,在经过数圈累积后,机器人 α 达到 0. 46
 

m 的

图 5　 实验场景

Fig. 5　 Experiment
 

scene

位置误差及 8. 69°的旋转误差,机器人 β 达到 0. 73
 

m 的

位置误差及 11. 4°的旋转误差。 接下来,将机器人 β 相对

于 α 的位置误差和旋转误差作为衡量定位精度的指标,
探讨不同参数设置及算法对定位结果的影响。

图 6　 实验 1 机器人运行轨迹

Fig. 6　 Robot
 

trajectories
 

in
 

experiment
 

1

1)评估不同参数对 SSA 估计位姿的影响

设置最大迭代次数 itermax = 20,方位误差因子 λ =
0. 3,评估不同时间窗口 w 影响下的平均定位精度和平均

耗时,如表 1 所示。 表中还列出了与文献[9]使用的列文

伯格-马夸尔特( Levenberg-Marquardt,
 

LM) 求解方法的

比较。 从结果来看,在无先验位姿的情况下,LM 由于缺

乏很好的初值,陷入了局部最优解,进而产生很大的定位

误差。 相比之下,SSA 作为一种全局优化算法,能够获得

更好的定位结果。 此外,随着 w 的增加,两种算法的定位

精度均有所提高,但会消耗更多的计算资源。
设置滑动窗口的时间长度 w = 120,方位误差因子

λ= 0. 3,评估最大迭代次数 itermax 对定位结果的影响,如
表 2 所示。 从表中可以看出,随着迭代次数的增加,算法

的定位精度和时间消耗均增加。 当 itermax = 20 时,算法基

本收敛,此时若继续增大迭代次数,定位精度提升不再明
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显,反而会增加耗时,影响实时性。
在理想情况下,机器人 α 的观测方位是准确的,可认

为机器人间的相对位置满足式(5),但在实验中,测量噪

音不可避免。 λ 过小,对当前时刻测量方位依赖过大,若
环境中的噪音较大,将会产生比较大的定位误差。 λ 过

大,会使麻雀种群前期搜索空间较大,导致收敛时间过

长。 选取合适的 λ ,可以有效减少搜索空间,使种群尽快

收敛,进而在有限的迭代次数内得到更加精确的解。 设

置 w= 120,itermax = 20,对不同的 λ 进行分析。 如表 3 所

示,当 λ = 0. 3 时,可以达到最佳定位精度。 与没有方位

误差因子(λ = 0)相比,位置误差减少了 38. 6%,角度误

差减少了 43. 4%。 且与搜索整个三维空间(λ = π)相比,
位置误差减少了 8. 5%,角度误差减少了 25. 1%。

表 1　 实验 1 滑动窗口
 

w 对定位结果的影响

Table
 

1　 Impact
 

of
 

sliding
 

window
 

w
 

on
 

the
 

positioning
 

accuracy
 

in
 

experiment
 

1

w( s) LM
 [9] SSA

位置误差 / m 角度误差 / ( °) 耗时 / ms 位置误差 / m 角度误差 / ( °) 耗时 / ms
25 5. 39±1. 92 92. 82±50. 69 12 2. 57±1. 88 39. 30±36. 48 9
50 5. 22±2. 16 76. 12±51. 24 14 1. 88±1. 58 20. 85±27. 12 15

100 3. 44±2. 44 47. 9±52. 22 24 0. 62±0. 31 3. 10±2. 73 25
120 2. 70±2. 07 35. 49±44. 48 26 0. 54

 

±0. 30 2. 90±2. 50 33
160 2. 53±2. 03 32. 91±41. 91 32 0. 53±0. 27 2. 79±2. 65 41

表 2　 实验 1 最大迭代次数 itermax 对定位结果影响

Table
 

2　 Impact
 

of
 

itermax
 on

 

the
 

positioning
 

accuracy
 

in
 

experiment
 

1
最大迭代次数 itermax 位置误差 / m 角度误差 / ( °) 耗时 / ms

1 1. 20±0. 72 9. 69±7. 42 4
5 0. 63±0. 38 4. 34±3. 71 10

10 0. 54±0. 30 3. 20±2. 68 17
20 0. 54±0. 30 2. 90±2. 50 33
40 0. 53±0. 29 2. 88±2. 52 61
60 0. 53±0. 29 2. 87±2. 41 91

表 3　 实验 1 方位误差因子 λ对定位结果的影响

Table
 

3　 Impact
 

of λ on
 

the
 

positioning
 

accuracy
 

in
 

experiment
 

1
λ= 0 λ= 0. 3 λ= 0. 5 λ= 1 λ= 2 λ= 3 λ= π

位置误差 / m 0. 88±0. 54 0. 54
 

±0. 30 0. 55±0. 31 0. 55±0. 32 0. 56±0. 35 0. 59±0. 44 0. 59±0. 52
旋转误差 / ( °) 5. 12±5. 36 2. 90±2. 50 3. 04±2. 86 3. 11±3. 24 3. 42±4. 74 3. 66±6. 47 3. 87±7. 46

　 　 2)后端图优化

为抑制 UWB 方位测量噪音对定位结果的影响,结合

图优化算法,对 SSA 优化结果进行约束,进一步提升定位

精度。 对 w = 120,itermax = 20,λ = 0. 3 的定位结果进行分

析。 如表 4 所示,基于图优化的相对位姿估计提高了定

位的精度和稳定性,相比于 SSA 优化后的结果,图优化后

的相对位置误差减少了 40. 7%,相对旋转误差减少了

27. 6%,且具有更低的标准差。 相比于利用纯里程计估

计相对位姿的方法,相对位置误差减少了 65. 6%,相对旋

转误差减少了 49. 4%。 经过图优化后,相对位置精度达

到了 0. 32
 

m,相对旋转精度达到了 2. 1°。 分别将利用

SSA 算法、图优化算法估算出的相对位姿映射到机器人

α 的真实轨迹上,得到图 7 所示的轨迹。 如图 7(a)所示,
利用 SSA 算法优化的轨迹可以消除累积误差,但受 UWB
测量噪音的影响,其定位结果存在很大波动,而通过图优

化融合里程计后,可以有效减少波动,得到如图 7( b)所

示轨迹。
表 4　 实验 1 不同方法的定位精度比较

Table
 

4　 Comparison
 

of
 

positioning
 

accuracy
 

of
different

 

methods
 

in
 

experiment
 

1

定位方法 位置误差 / m 旋转误差 / ( °)
纯里程计 0. 93±0. 84 4. 15±2. 22
SDP[11] 0. 79±0. 39 3. 17±2. 11
EKF[12] 0. 48±0. 25 4. 08±3. 90
PF[23] 0. 39±0. 22 3. 68±2. 03

本文 SSA 算法 0. 54
 

±0. 30 2. 90±2. 50
本文图优化算法 0. 32±0. 19 2. 10±2. 06

　 　 此外,表 4 还列出了与其他定位算法的对比。 从表

中可知,相比于扩展卡尔曼滤波( extended
 

kalman
 

filter,
 

EKF)
 [12] ,粒子滤波(particle

 

filter,
 

PF)
 [23] 在处理非线性
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图 7　 实验 1 不同算法轨迹估计图

Fig. 7　 Trajectory
 

estimation
 

diagrams
 

of
 

different
algorithms

 

in
 

experiment
 

1

和非高斯系统时更具优势,可以获得更高的定位精度。
但是,EKF 和 PF 对初始值均有一定的依赖性,在实验

中,如果初始值偏离真实值较大,EKF 和 PF 算法前期可

能会出现较大的误差,甚至导致滤波器发散。 因此,给定

真实的先验位姿去初始化 EKF 和 PF。 相比之下,本文所

提算法不仅不需要先验位姿,还可以实现更高的定位精

度。 此外,基于半定规划( semidefinite
 

program,
 

SDP) [11]

的方法也不需要先验位姿,但是受测量噪音的影响,无法

获得一阶秩解,进而会产生较大的定位误差。
3. 3　 实验 2

 

　 　 为验证机器人移动速度对定位结果的影响,将两机

器人的移动速度从 0. 2
 

m / s 提升至 0. 7
 

m / s,并使其随机

移动,其移动轨迹如图 8 所示。 速度提升后,不同方法的

定位结果如表 5 所示,本文所提图优化方法,最终可以达

到 0. 39 m 的相对位置精度以及 2. 84°的相对旋转精度。
此外,当速度提升后,所有方法的定位精度均有所下降。

但与其他方法相比,本文所提方法仍具有较高的定位精

度。 以机器人 α的真实轨迹为参考,根据 SSA 算法,图优

化算法得到机器人 β 的轨迹如图 9 所示。

图 8　 实验 2 机器人运行轨迹

Fig. 8　 Robot
 

trajectories
 

in
 

experiment
 

2

图 9　 实验 2 不同算法轨迹估计图

Fig. 9　 Trajectory
 

estimation
 

diagrams
 

of
 

different
algorithms

 

in
 

experiment
 

2
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本文涉及的相关算法,在一款内存为 16
 

GB 搭载
 

Intel
 

i9-13900HX
 

5. 4
 

GHz
 

CPU 的笔记本电脑上运行。
相关算法消耗时间如表 6 所示。 其中,本文提出的基于

SSA 算法的机器人间相对定位算法耗时为 33 ms,图优化

算法消耗时间为 68 ms,总消耗时间为 101 ms。 所提的方

法大约能达到 10
 

Hz 的输出频率,具有一定的实时性,能
够满足大多数机器人应用的需求。

表 5　 实验 2 不同方法的定位精度比较

Table
 

5　 Comparison
 

of
 

positioning
 

accuracy
 

of
different

 

methods
 

in
 

experiment
 

2
定位方法 位置误差 / m 旋转误差 / ( °)
纯里程计 1. 16±0. 71 16. 11±9. 37
SDP[11] 1. 13±0. 65 8. 3±5. 49
EKF[12] 0. 51±0. 34 3. 95±3. 63
PF[23] 0. 46

 

±0. 30 3. 71±2. 55
本文 SSA 算法 0. 55

 

±0. 35 4. 75±4. 16
本文图优化算法 0. 39±0. 30 2. 84±2. 49

表 6　 算法时间消耗

Table
 

6　 Algorithm
 

time
 

consumption (ms)
SSA 优化 图优化 总时间消耗

33 68 101

4　 结　 论

　 　 本文提出了一种基于超宽带方位的机器人间相对定

位方法。 首先,利用短期 UWB 方位测量和机器人运动轨

迹估计机器人间相对位姿。 其次,通过后端图优化算法

抑制因超宽带方位测量误差对定位结果造成的影响。 最

后,在 12 m×6 m 的室内环境中进行了实地测试,结果表

明,在满足实时性的基础上,能够达到 0. 32 m 的相对位

置精度以及 2. 1°的相对旋转精度。 在后续的工作中,将
对算法的实时性及精度进行优化,并拓展到多机器人编

队与地图构建中。
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