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摘　 要:针对云端单一集中数据处理时效性低、架空线路上鸟巢检测精度不高、模型对边缘计算设备算力高消耗以及目标定位

不准确的问题,提出了一种基于云边端协作的架空线路鸟巢检测与定位算法。 该算法通过云、终、边缘 3 端的协作,解决了云端

集中处理效率低的问题,并通过云边数据可视化协作解决由于角度及光线引起的图像不清晰问题。 为了提高架空线路鸟巢检

测的精度,该算法在 YOLOv5x 模型基础上进行了优化。 首先,通过将主干特征提取网络中的 C3 模块替换为 C2f 模块,并在最

后一层加入 SE(squeeze
 

and
 

excitation)注意力模块,以提升模型对小目标的检测能力。 其次,将激活函数替换为 Mish 函数,解
决训练梯度饱和导致神经元停止学习的问题。 为了降低模型对边缘计算设备算力的消耗,对改进后的模型进行剪枝微调以降

低模型参数规模。 基于此优化模型,提出了三维目标定位算法,结合 GIS( geographic
 

information
 

system)系统对定位结果进行修

正,实现了对检测目标的精准定位。 实验数据显示,改进后的模型平均精度均值达到 93. 25%,比原 YOLOv5x 模型提升了

3. 44%,优化后的模型剪枝率达到 45%。 检测目标经过三维空间建模计算并通过位置修正能够定位到相应的杆塔,有效指导工

作人员快速准确排除隐患。
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Abstract:
 

Aiming
 

at
 

the
 

problems
 

of
 

low
 

timeliness
 

of
 

single
 

centralized
 

data
 

processing
 

in
 

the
 

cloud,
 

low
 

accuracy
 

of
 

bird’ s
 

nest
 

detection
 

on
 

overhead
 

lines,
 

high
 

consumption
 

of
 

model ’ s
 

arithmetic
 

power
 

on
 

edge
 

computing
 

devices,
 

and
 

inaccurate
 

target
 

localization,
 

an
 

algorithm
 

for
 

detecting
 

and
 

localizing
 

bird’s
 

nests
 

on
 

overhead
 

lines
 

based
 

on
 

the
 

collaboration
 

of
 

cloud-edge
 

and
 

end-
end

 

is
 

proposed.
 

The
 

algorithm
 

solves
 

the
 

problem
 

of
 

low
 

efficiency
 

of
 

centralized
 

processing
 

in
 

the
 

cloud
 

through
 

the
 

collaboration
 

of
 

cloud,
 

end
 

and
 

edge,
 

and
 

solves
 

the
 

problem
 

of
 

unclear
 

images
 

due
 

to
 

angle
 

and
 

light
 

through
 

the
 

collaboration
 

of
 

cloud-edge
 

data
 

visualization.
 

In
 

order
 

to
 

improve
 

the
 

accuracy
 

of
 

bird’ s
 

nest
 

detection
 

on
 

overhead
 

lines,
 

the
 

algorithm
 

is
 

optimized
 

on
 

the
 

basis
 

of
 

YOLOv5x
 

model.
 

First,
 

by
 

replacing
 

the
 

C3
 

module
 

in
 

the
 

backbone
 

feature
 

extraction
 

network
 

with
 

the
 

C2f
 

module,
 

and
 

adding
 

the
 

SE
 

(squeeze
 

and
 

excitation)
 

attention
 

module
 

in
 

the
 

last
 

layer
 

to
 

improve
 

the
 

model’ s
 

ability
 

to
 

detect
 

small
 

targets.
 

Secondly,
 

the
 

activation
 

function
 

is
 

replaced
 

with
 

the
 

Mish
 

function
 

to
 

solve
 

the
 

problem
 

of
 

neurons
 

stopping
 

learning
 

due
 

to
 

the
 

saturation
 

of
 

the
 

training
 

gradient.
 

In
 

order
 

to
 

reduce
 

the
 

model’ s
 

consumption
 

of
 

computing
 

power
 

on
 

edge
 

computing
 

devices,
 

the
 

improved
 

model
 

is
 

pruned
 

and
 

fine-tuned
 

to
 

reduce
 

the
 

scale
 

of
 

model
 

parameters.
 

Based
 

on
 

this
 

optimized
 

model,
 

a
 

3D
 

target
 

localization
 

algorithm
 

is
 

proposed,
 

and
 

the
 

localization
 

results
 

are
 

corrected
 

by
 

combining
 

with
 

the
 

GIS
 

(geographic
 

information
 

system)
 

system,
 

which
 

achieves
 

accurate
 

localization
 

of
 

the
 

detected
 

target.
 

The
 

experimental
 

data
 

show
 

that
 

the
 

mean
 

average
 

accuracy
 

of
 

the
 

improved
 

model
 

reaches
 

93. 25%,
 

which
 

is
 

3. 44%
 

higher
 

than
 

the
 

original
 

YOLOv5x
 

model,
 

and
 

the
 

pruning
 

rate
 

of
 

the
 

optimized
 

model
 

reaches
 

45%.
 

The
 

detection
 

target
 

is
 

able
 

to
 

locate
 

to
 

the
 

corresponding
 

pole
 

tower
 

after
 

3D
 

spatial
 

modeling
 

calculation
 

and
 

position
 

correction,
 

which
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effectively
 

guides
 

the
 

staff
 

to
 

quickly
 

and
 

accurately
 

eliminate
 

hidden
 

dangers.
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0　 引　 言

　 　 随着我国社会经济的发展,对电能的需求不断增大,
相应的输电线路规模也在不断扩大[1] 。 由于输电线路覆

盖的区域与鸟类的生存区域重叠度增加,鸟类在高压杆

塔上筑巢的概率持续上升。 杆塔上的鸟巢在空气潮湿时

容易导致横担与导线短接,引发跳闸事故;而在气候干燥

时,鸟巢容易发生火灾,给安全稳定输电带来极大隐

患[2] 。 国家电网输电线路停电统计数据显示,与鸟巢相

关的停电事件占比达到 10. 36%, 仅次于雷电事故

(42. 57%)和外力事故(25. 33%) [3-4] 。 因此,对架空线路

上鸟巢的精准、快速检测对于确保电能输送的安全可靠

至关重要。
传统的人工实地巡检效率低下[5] 、对巡检人员的巡

检经验以及体力有较高的要求。 在一些环境恶劣的区

域,工作人员实地巡检的难度较大且难以到达,从而导致

一些故障在早期未造成严重影响时无法被及时发现。
目前,基于计算机视觉的输电线路异物检测方法正

在逐渐取代传统巡检方式[6] 。 结合深度学习算法的无人

机巡检方式极大提高了巡检效率,深度学习模型能够自

主深层次的提取图像内不易发现的图像信息以及位置信

息,削弱图像背景对目标检测的影响,具有较强鲁棒性。
基于计算机的深度学习的目标检测算法可以分为一段式

和两段式两类。 前者主要包括 YOLO[7] 系列以及 SSD[8]

算法;后者主要由 CNN 衍生,包括 Faster
 

R-CNN[9] 、Mask
 

R-CNN[10] 等算法。 深度学习需要大量样本数据,传统的

云端集中式数据处理的模式存在实时性不强,带宽不足,
能耗较大以及不利于数据安全及隐私的问题[11] 。 同时,
为保证快速消除鸟巢缺陷,需要对鸟巢实现精准的定位。
由于无人机通常是在杆塔侧上方进行数据采集,直接利

用无人机自带 GPS 系统难以保证缺陷目标的精确定位。
Wu 等[12] 通过在图像中搜索符合鸟巢样本的连通区

域,并对连通区域分析,最后通过描述鸟巢的特征量来实

现鸟巢检测。 周子扬等[13] 为实现航拍电力杆塔鸟巢的

自动检测,提出了一种融入纹理特征的检测方法,通过分

析鸟巢样本纹理特征的灰度共生矩阵特征量,使用惯性

矩特征量得到疑似鸟巢区域分类,与同类算法相比提升

了检测精度,最终检测为 83. 6%。 丁建等[14] 为解决自动

巡检效率低、检测精度低的问题,提出了一种优化的

YOLOv3 算法,采用两个有次序的 YOLOv3 网络分别对鸟

巢进行检测,提升了检测的精度,网络模型体积在 235
 

MB 以上,参数规模较大而导致模型推理时间长,对边缘

计算设备的算力要求较高,模型参数规模依然有优化的

空间。 夏睿等[15] 针对仅用单一电量且实际数据集下检

测准确度低、初始化训练随机性较强的问题,采用端到端

联合训练方式,边界框分支与掩模分支并行训练提升了

模型性能,采用了迁移学习的方式加快网络收敛。 赵霖

等[16] 以提升深度学习模型检测效率及精度为目标,在
YOLOv5 模型最后一层添加 CBAM 注意力模块,提升主

干特征提取网络对图像特征的提取,将激活函数替换为

Mish 函数,提升分类精度和泛化能力以提升模型的检测

精度,但模型参数量为 27. 22×106,缺乏剪枝处理模型的

参数依然庞大。 张焕龙等[17] 通过对基础 YOLOv5 模型

增加通道注意力模块、空间注意力模块以及特征增强模

块提了检测精度,但模型的参数规模较大且检测精度仅

有 88. 59%。 黄佳庆等[18] 针对深度学习模型对数据库数

据量的要求以及检测精度低的问题,首先对数据集进行

扩充,采用两阶段式算法 Faster
 

R-CNN 进行改进,提升了

检测精度,但两阶段式算法存在模型体积较大,检测速度

较慢的问题。
周振宇等[19] 针对配电网与分布式资源之间频繁双

向互动对通信网全面感知与广域传输能力的高需求,提
出了基于 5G 云边端协同框架的资源调度方法,多级框架

相互协同,在高可靠性低延时的约束下支撑分布式资源

接入配电网双向互动。 肖靖等[20] 针对传统安监模式实

时性差、检查力度不足导致安全隐患大的问题,提出了一

种云边端协同的电力安全管理系统,通过云边端协同技

术实现信息联动,大幅提升了系统的实时性与交互性,有
效提升了智能化、可靠化的安全管理水平。

综上所述,目前方法通过对基础模型的优化,在一定

程度上提升了目标检测精度,但同时导致模型过大,不利

于边缘部署;而且均未涉及无人机巡检中的目标精准定

位问题。
针对云端数据集中式计算处理效率低;无人机巡检

过程中,可能会遇见光线影响及拍摄角度不佳导致图像

质量不高、拍摄距离过远导致检测目标尺寸较小,使得目

标检测精度下降;鸟巢检测算法精度还可进一步提升;模
型参数规模过大而导致边缘计算设备算力成本高;目标

无法精准定位 5 个问题。 本文提出了一种能够实现数据

交互、目标检测和目标定位的云边端协作系统。 通过云

边数据可视化协作,提高图像质量;利用 C2f 模块替换基

础 YOLOv5x 模型特征提取网络中的 C3 模块,并在最后

一层加入 SE 模块,提升了模型的检测精度以及模型对小

尺寸目标的检测能力;同时,将基础模型的激活函数替换

为 Mish 激活函数,防止训练饱和化,提升检测精度;随
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后,对模块改进后的模型进行剪枝微调,降低模型的参数

规模,加快模型的推理速度,降低边缘计算设备的计算成

本;最后,将三维空间目标定位算法与 GIS 系统结合,实
现目标准确定位。

1　 云边端数据交互系统

1. 1　 云-边-端系统框架

　 　 如图 1 所示,云边端协作框架由 4 个层面组成,分别

为:云层,主要负责数据安全管理、数据存储、数据可视

化;边缘层,主要负责数据计算处理、数据接收传输;终
端,主要负责数据采集、指令接收;通信层,为数据的传输

提供载体。

图 1　 云边端协作框架图

Fig. 1　 Framework
 

diagram
 

for
 

cloud-side-end
 

collaboration

云端包括线上安全管理平台与数据管理中心,线上

管理平台为信息管理枢纽。 在云计算环境中运行的虚拟

服务器,其配置比较灵活拥有高度的运行环境。 云服务

器将计算和存储资源虚拟化,形成一个可以任意组合分

配的集合。 以深度学习为代表的人工智能算法通常需要

较强的设备算力支持,而云端计算中心具有强大的资源

服务能力,然而远距离传输导致时可能导致时效性降低。
边缘计算设备相较于云端计算中心计算能力较弱,

主要用于完成一些简单的运算任务。 这些设备通常被部

署在靠近网络边缘侧的位置,能够实现实时检测、计算与

存储,具有时效性强、带宽高、可靠等优点。 然而,边缘设

备的处理性能通常不如云端设备,缺乏足够的内存和处

理器来处理大量数据,因此无法执行复杂的操作,比如深

度学习模型的训练。 因此,须在云端训练完成深度学习

模型训练才能够部署到边缘计算设备以实现智能检测。
在通信层方面,信号通信基于移动通信 5G 信号,通

过手机发出的 WiFi 信号将边缘计算平台和终端无人机

设备连接到同一局域网内进行数据传输,最终通过移动

通信信号将数据反馈到云端管理平台。
在本文,“端”指代终端设备,即各种传感器,在本文

中终端设备指的是用于日常巡检的无人机。 无人机主要

工作包括图像采集、记录飞行高度、实时经纬度、飞行视

角等飞行数据信息,并与边端、云端设备共享。
1. 2　 云-边协作

　 　 如图 2 所示,云层主要负责巡检之前将巡检线路走

廊下达到巡检人员的边端设备。 巡检人员通过查看任务

指派,对既定线路进行人员工作安排。 在巡检过程中,通
过网络数据传输,实时接收边缘计算结果,并将结果可视

化呈现在云端服务器。 当出现检测异常时,检测数据(图

像和经纬度信息) 将被传输至数据管理中心进行记录。
线上安全管理平台人员可根据检测数据分析隐患是否能

够立即排除,若无法排除,则会再次下达隐患排查任务进

行隐患消除。 边缘计算平台通常是巡检人员所持的便捷

式电脑,通过预先部署云端服务器训练完成的深度学习

检测模型,对无人机采集的数据进行实时检测以及对目

标位置的计算并反馈到云端信息管理平台。

图 2　 云-边数据交互

Fig. 2　 Cloud-edge
 

data
 

interaction

1. 3　 边-端协作

　 　 在移动手机发出的移动通信 5G 信号形成的局域网

内,边端设备和无人机通过 Wi-Fi 进行数据传输。 通过

从边端获取的指令,可以在大疆无人机飞控平台设置无

人机的飞行路线、飞行高度、摄像机的拍摄角度等信息,
使无人机按照设定的飞行线路采集图像数据。 边缘计算

平台能够实时接收到飞行器采集的图像,在检测到异常

情况时截取图像并导出目标中心点坐标,这些坐标将用

于边缘计算平台通过三维空间定位方法进行的经纬度计

算,得出计算结果后结合 GIS 对比修正,最终得出杆塔编

号,并将结果保存到边缘计算平台的存储中心。
1. 4　 云-边-端协作

　 　 如图 3 所示,云边端 3 端能够实现数据信息的实时

交互。 云端的线上安全管理平台能够实时监控无人机设

备传回的图像数据以及边缘计算设备处理分析完成的数

据,在接收到异常图像(置信度较低) 时,安全管理人员

可以通过边缘计算设备给出的目标位置信息,通过介入

操作无人机飞控平台调整无人机飞行姿态,多次调整无
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人机飞行姿态来解决由于拍摄角度、拍摄位置而导致的

拍摄图像光线不佳、图像不清晰以及目标尺寸小的问题。
同时,工作人员可以对除鸟巢以外的故障进行初步

判断,调取无人机多角度、多次进行拍摄,若存在安全隐

患可以下发指令指挥巡检人员进行现场排查。 巡检任务

完成之后,巡检人员会将无人机设备采集的各种数据保

存到边端设备,并汇总到云端信息管理中心。 通过扩充

图像数据库(包括鸟巢图像及其他电力设备如绝缘子、异

物等数据),确保模型训练时最大程度接收到真实拍摄的

图像而不是虚拟扩充图像。 通过日常巡检的图像积累对

模型的持续更新学习,到达模型数据库要求之后,能够对

其他电力设备进行检测,如绝缘子自爆、掉环、缺失等情

况。 最终在云端进行新的模型剪枝、微调训练,新的模型

将部署到边端设备。 云边端协作检测以及模型持续更新

学习旨在不断优化本文提出的目标检测算法以提升电力

设备故障的检测准确性和效率。

图 3　 云-边-端数据交互

Fig. 3　 Cloud-edge-end
 

data
 

interaction

2　 目标检测

2. 1　 YOLOv5x 模型结构

　 　 YOLOv5 经过不断更新迭代,根据模型网络深度的

不同,共分为 x、l、m、s、n
 

5 个版本。 这 5 个版本的模型结

构完全相同,只是网络深度不同。 基础的 YOLOv5x 具有

最高的检测精度,网络深度也最深,参数量最大,因此本

文选择此模型作为基础模型进行改进及剪枝。 YOLOv5x
的结构延续了 YOLO 系列的结构特点,由主干特征提取

网络,特征融合网络以及头部检测网络 3 部分构成[21] ,
如图 4 所示。
　 　 CSP-Darknet 作为 YOLOv5x 的主干特征提取网络,
主要作用是提取图片的特征信息,为特征融合网络对图

片信息提取融合奠定基础。 主干特征提取网络延续了

YOLO 系列对残差网络(Residual)的使用,这有助于减弱

由于网络加深而发生信息丢失的问题。 在主干特征提取

网络的首端和末端分别加入了 Focus 模块、SPP ( spatial
 

pyramid
 

pooling)模块。 第 1 层的 Focus 模块将输入的高

分辨率图片切割为 4 组低分辨率图片,减弱了由于下采

样而产生的信息丢失问题[22] 。 末端的 SPP 模块实现不

同尺度的特征融合[23] 。
特征融合网络由 FPN ( feature

 

pyramid
 

network) 和

PANet(path
 

aggregation
 

network)构成,分别从主干特征提

取网络的浅层、中层、深层获取不同尺度的特征图,经过

上采样以及 C3 模块对图像特征信息再次提取,将图像特

征信息进行堆叠融合。 最后,将特征融合网络提取的特

征图分别按 20×20、40×40、80×80 这 3 种尺寸送入头部

检测网络中,分别对应图像中的大、中、小尺寸目标进行

检测。
2. 2　 C2f 模块

　 　 如图 5(a)所示,CBS 模块包含卷积( convolution)、归
一化(batch

 

normalization) 和 SiLU 激活函数 3 部分,C2f
模块首先利用 CBS 模块处理输入的特征信息。 然后,
Split 层对 CBS 模块输出的特征信息进行分割操作,分割

后一部分经过跳跃连接流转到堆叠层 c,另一部分流转

到 Bottleneck 模块中。 C2f 模块多次使用 Bottleneck 结构

实现对信息的并行分流和跳跃连接。 3 个结构块首尾相

连,每经过一次处理,一部分信息流入堆叠层,一部分信

息输入到下一个 Bottleneck 再次进行特征信息处理。 这

个过程重复 3 次,以获得更加丰富的图像特征信息。
如图 5(b) 所示,Bottleneck 结构作为梯度流的主分
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图 4　 YOLOv5x 模型结构

Fig. 4　 Structure
 

of
 

YOLOv5x
 

model

支结构,其本质是利用 CBS 模块实现特征信息提取的残

差组件。 这种残差结构能够实现第 1 层信息与最后一层

信息的跳跃连接,从而减小底层特征信息丢失的概率。

图 5　 C2f 结构

Fig. 5　 Structure
 

of
 

C2f

相较于 YOLOv5x 模型原始的 C3 模块,C2f 模块采用

了多个 Bottleneck 结构。 这种模块能够随着训练的进行,
网络深度不断加深,保留更加完整的图像特征信息,解决

由于梯度消失而网络参数不再更新的问题。 这种设计使

得网络在更深的层次上能学习到更多的特征信息。

2. 3　 SE 注意力模块

　 　 如 图 6 ( a ) 所 示, 包 括 压 缩 ( Squeeze )、 激 励

(Excitation)和缩放(Scale)3 个部分。 在引入 SE(squeeze
 

and
 

excitation)模块之前,训练任务中的每个通道(图层)
的权重都是相同的,这就导致神经网络浪费了大量的计

算资源去关注对训练任务意义不大的通道。 引入 SE 模

块之后,主干特征提取网络可以自主挖掘在训练任务中

学习到的通道之间的关系,抑制对训练任务作用弱的通

道的关注,同时强调对训练任务作用强的通道的关注,从
而加快推理速度并提升模型的检测精度。

1)
 

压缩部分(Squeeze)首先对输入的特征层通道进

行全局平均池化处理,将全局的空间特征信息压缩到通

道维度中。 这将原本特征维度为 H×W×C 的输入通过池

化(pooling)转换为 1×1×C 维度的输出。 这一步特征图
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图 6　 注意力模块示意图

Fig. 6　 Schematic
 

diagram
 

of
 

SE
 

module

层信息将转换为实数代替,其数学公式如下:

ZC = Fsq(uc) = 1
W × H∑

W

i = 1
∑

H

j = 1
uc( i,j) (1)

式中:ZC 表示第 c 个统计量,uc 表示输入的第 c 个特征图

层,W、H 分别表示特征图的宽度及高度,( i,j)表示特征

图该位置的数值。
2)激励部分(Excitation)如图 6(b)所示,由两个全连

接层(fully
 

connected
 

layer,FC)组成。 通过两次全连接操

作,拟合通道之间复杂的相关性,依据相关性确定通道重

要程度。 第 1 个 FC 经过缩放因子 r 完成通道压缩,目的

是压缩通道数而降低输出;第 2 个 FC 中含有 C 个神经

元,目的是为了恢复通道数。 具体可表达为:
s = Fex(ZC,P) = σ(g(ZC,P)) = σ(P2δ(P1ZC))

(2)
式中:s 为输出权重,P 为权重矩阵,P1 为第 1 个 FC 全连

接模块所生成的权重矩阵;P2 为第 2 个 FC 全连接模块

所生成的权重矩阵; σ、 δ 分别为 Sigmoid、 ReLU 激活

函数。
3)Scale 部分将前一步中 Excitation 获得的具有归一

化权重的通道与原始特征图进行结合,从而生成最终的

特征图输出,其中不同的通道具有不同的权重。
2. 4　 Mish 函数

　 　 图 7 展示了 Mish、Softplus、ReLU、Leaky
 

ReLU、Tanh
激活函数的特点。 激活函数扮演着将输入映射到输出的

角色,引入了非线性因素,直接影响到网络的收敛速度,
检测精度以及泛化能力。 Softplus 函数虽然处处可导,但
不以 0 为中心使得网络训练时梯度更新较慢。 ReLU 负

半轴输出为 0,正半轴为线性增长,激活函数在反向传播

过程中,当梯度很大时,会导致流经的神经元失效,对模

型的训练产生不利影响。 Leaky
 

ReLU 激活函数解决了

ReLU 激活函数输入为负输出始终为 0,导致神经元不学

习的问题,但 Leaky
 

ReLU 在负半轴是线性增长,无法提

供统一的非线性映射;Tanh 激活函数关于原点对称,当
给与一个极大或极小输入时,函数值趋向于 1,在模型训

练过程中会发生神经网络饱和化训练参数不再更新的

问题。

图 7　 激活函数对比

Fig. 7　 Activation
 

function
 

comparison
 

chart

Mish 函数有 4 个特点:无上限、有下界、平滑、取值范

围内非单调。 无上限有助于避免网络的饱和化,确保训

练参数持续更新,提高网络的表达能力。 有下界可以增

强网络正则化,防止过拟合。 此外,平滑的 Mish 函数具

有连续可导的特性,可以提高训练的稳定性。 非单调性

有助于提供更丰富的表达能力,使得网络可以更好地适

应复杂的数据分布。 Mish 激活函数的具体表达为:
f(x) = xtanh(Softplus(x)) (3)

tanh(x) = (ex - e -x)
(ex + e -x)

(4)

Softplus(x) = log(1 + ex) (5)
2. 5　 模块改进的 YOLOv5x 模型

　 　 如图 8 所示,本文主要对 YOLOv5x 模型的主干特征

提取网络进行改进。 首先,将主干特征提取网络中的 C3
模块替换为 C2f 模块。 由于 C2f 模块较于 C3 模块能够

保留更多的梯度流信息,具有更强的信息提取能力。 但

是 C2f 模块计算流程远比 C3 模块复杂,替换模型中的所

有 C3 模块所牺牲的计算资源较多,固文中并未对特征融

合网络中的 C3 模块进行替换。 其次,在主干特征提取网

络的最后一层加入 SE 通道注意力模块,该模块能够自主

学习区分通道重要性,使主干特征提取网络更加关注于

重要的通道而提升信息的提取能力,提升推理能力。 最

后,使用平滑性更好、 泛化能力更强的 Mish 函数对

YOLOv5x 原本的 SiLU 激活函数进行替换。
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图 8　 改进型 YOLOv5x 结构

Fig. 8　 Optimized
 

YOLOv5x
 

structure
 

diagram

2. 6　 模型剪枝

　 　 模型剪枝能够在检测时占用更少的边缘计算设备算

力。 通过剪枝去除模型训练贡献度较小的卷积核及通

道,最大限度的减少模型的参数,从而提升模型的检测速

度。 在 YOLOv5x 模型中包含大量的 CBS 模块,其中 BN
层通过对输入数据进行位移和缩放处理实现归一化,具
体表达为:

y i = γx i + β (6)

x i =
x i - μB

σB
2 - ε

(7)

式中:γ 和 β 分别表示位移和缩放因子,x i 表示 BN 层的

输入,y i 表示 BN 层的输出,μB 和 σB
2 分别表示均值和方

差,B 为训练数据的最小批次,ε 为预防分母为 0 而设置

的较小非 0 常数。
在 YOLOv5x 模型存在一些 BN 层中缩放因子 γ 趋近

于 0,导致激活函数将 BN 层的输入映射到输出时得到的

数据也趋近于 0。 这意味着该 BN 层对应的下一层的通

道及上一层卷积核在训练过程中对此任务的贡献度比较

小。 在正常的训练过程中模型 BN 层的 γ 呈正态分布,
峰值在 0 附近的很少,无法进行剪枝操作,为缩小模型参

数规模将 BN 层的 γ 参数带到损失函数中进行训练。 稀

疏训练通过引入 L1 正则约束,引入缩放因子,具体表

达为:

L = ∑
(x,y)

l( f(x,W),y) + λ∑
γ∈T

g(γ) (8)

式中:前半部分是正常训练时的 loss 函数,后半部分则为

L1 正则约束,λ 为正则系数。 在训练反向传播的时候,
引入缩放因子即能完成稀疏训练。 在完成稀疏训练之后

将 BN 层对应的卷积核及通道进行裁剪。 为保证上下层

尺寸一致可以进行特征融合,特征融合,模型训练的顺利

进行,本文并没有对所有的 BN 层进行裁剪,保留了含

Bottleneck 结构中含有 shortcut 的 BN 层。

如图 9 所示,缩放因子为 0. 02、0. 01 的 BN 层缩放因

子趋近于 0,通过激活函数的映射对训练任务的意义不

大,在剪枝操作中就将其去除;另外例如缩放因子为

2. 12、2. 59、5. 23 的 BN 层,通过映射得到的数值较大,剪
枝操作保留这些 BN 层。

图 9　 剪枝示意图

Fig. 9　 Pruning
 

diagram

3　 目标定位

　 　 在实际的检测中,不仅需要快速准确地检测出架空

线路上的鸟巢,还需要确定鸟巢的精确位置,以指导检修

人员快速高效地对鸟巢进行无害化处理。 无人机巡检流

程可分为两个阶段,第 1 阶段为无人机跟随设定的航线

自主飞行巡检;第 2 阶段为人为控制无人机复飞,目标为

第一阶段模型检测出置信度低于 0. 6 的图像,这类图像

通常为拍摄距离过远、拍摄光线不佳等持有怀疑态度的

目标。 其中目标定位流程图如图 10 所示,无人机主要负

责图像数据的采集以及飞行数据(包括飞行高度、相机拍

摄视角、无人机实时经纬度)传输;无人机采集数据传输

至提前部署到边缘计算设备中的检测模型进行图像检

测,并将图像以锚框标注的形式以及锚框像素中心点坐

标位置传输到定位算法中,结合 GIS 辅助实现目标定位。
3. 1　 数据采集

　 　 在日常巡检过程中,首先需要调整无人机的拍摄角

度。 在飞行过程中,边缘设备会接收无人机的飞行数据,
包括无人机的拍摄视角、飞行高度、实时经纬度信息以及

无人机拍摄的图像信息。 巡检结束后,图像信息将上传

到云端设备以扩充数据库。
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图 10　 目标定位流程

Fig. 10　 Target
 

localization
 

flowchart

3. 2　 定位

　 　 目前用于日常巡检的无人机配备了全球定位系统

(GPS),本文提出的空间定位算法可以通过提取无人机

实时经纬度、飞行高度和拍摄视角等飞行数据,并经过比

例尺换算来确定鸟巢的位置。 本质上是运用了屏幕上的

像素点与实际的坐标存在一一对应的关系。
如图 11 所示,在检测模型对目标进行识别后会以锚

框的形式标注出目标并且给出检测模型对于该图像目标

的置信度,此图中置信度为 0. 56。 同时,将拍摄图像的

尺寸大小、锚框的左上顶点坐标、右下顶点坐标以及锚框

中心点坐标存储在边缘设备中。 以上这些数据在图中分

别表示为 size(图像宽,图像高)、box1(左上顶点横坐标,
左上顶点纵坐标)、box2(右下顶点横坐标,右下顶点纵坐

标)、cen(中心点横坐标,中心点纵坐标)。 通过查询存

储的位置信息通过比例尺换算的关系可以换算出目标的

实际经纬度。

图 11　 图像检测信息图

Fig. 11　 Image
 

detection
 

information
 

chart

本文提出的三维空间建模定位算法如图 12 所示,θ
为无人机视野角度,为无人机出厂固定参数;δ 为机载相

机与机身的可调节的夹角,本文称之为拍摄角度。 本文

设定以图像建立的坐标轴原点位于左上方且向下向右为

正,目标中心点位于屏幕像素点(x,y),则对应的经纬度

为 X lon,Y lat。

图 12　 建模定位示意图

Fig. 12　 Modeling
 

positioning
 

diagram

首先根据无人机的高度以及相机视角计算实地长度

和宽度,计算公式为:
Wr = 2htan(θ / 2) (9)
Hr = WrHd / Wd (10)

式中:Hr、Wr 代表实地的长度与宽度,单位为 m;Hd、Wd

为屏幕分辨率宽度及高度;θ 为相机的视野视角;h 为无

人机飞行高度,单位为 m。
其次计算目标像素相对于屏幕中心点的归一化位

置,计算公式为:
X = (Wd / 2 - x)Wr / (Wd) (11)
Y = (Hd / 2 - x)Hr / (Hd) (12)

式中:X、Y 为相对于屏幕中心点归一化后的位置。
根据无人机当前的位置,换算实地坐标,计算公

式为:
X lon = Xd + Xμ (13)
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Y lat = Yd + Yα (14)

μ = 180
πRcosβ

(15)

α = 180
πR

(16)

式中:Xd、Yd 分别为无人机的实时经纬度坐标;X lon、Y lat

分别为目标实际的经度及纬度;μ、α 分别为经度、纬度的

转换系数,R 为地球半径,β 为无人机所处位置的纬度值。
3. 3　 位置修正

　 　 电力 GIS 将电力设备信息、电网运行状态信息、电力

技术信息、生产管理信息、电力市场信息与山川、地势、城
镇、道路,以及气象、水文、地质、资源等自然环境信息集

中于统一系统[24] 。 如图 13 所示,由于无人机拍摄问题

可能存在计算位置与实际目标位置的偏差,所以云端安

全管理平台在下发任务的同时,将需要巡检的线路走廊

信息(经纬度、杆塔编号以及走廊走向)从 GIS 系统获取

并导入到巡检人员的边端设备中。 在边缘计算平台计算

出目标位置之后采用距离最小法则将目标修正到线路走

廊的杆塔上。
计算公式为:
min[ | x i - x | +| y i - y | ] (17)

式中:x i 为第 i 根杆塔的经度,x 为计算出目标的经度;y i

为第 i 根杆塔的纬度,y 为计算出目标的纬度。

图 13　 无人机定位示意图

Fig. 13　 Schematic
 

of
 

drone
 

positioning

4　 实验及实验结果分析

4. 1　 数据集处理

　 　 原始数据集分为两部分,包含鸟巢来自采集数据集

分 642 张,另外一部分 1
 

136 张来自中国公开绝缘子数据

集的不包含鸟巢部分[25] 。 由于 YOLOv5x 模型的训练需

要大量的数据集,而且采集的数据集大部分是杆塔上不

含鸟巢的负样本,直接训练会导致模型过拟合,从而出现

的检测结果不真实。 为了解决这个问题,采用了旋转、缩
放、改变对比度、改变亮度、添加马赛克的方法对所采集

的图片进行随机扩充。 最终获取图片 2
 

364 张,包括杆

塔上未出现鸟巢图片的负样本 1
 

136 张,高压杆塔上存

在鸟巢的正样本 1
 

278 张,正负样本基本平衡。 在收集

图片后采用 LabelImg 标注软件对鸟巢进行标注,标注完

成后会生成包括目标文本信息的文件。 实验预留 10%的

图片作为测试集,以验证模型的可行性。

4. 2　 实验环境

　 　 为了验证本文研究方法的合理性,在 Python 环境下

基于 Pytorch 深度学习框架进行实验,系统参数如表 1
所示。

表 1　 系统参数

Table
 

1　 System
 

parameters

配置 参数

操作系统 Windows
 

10
CPU i7-10700K
GPU NVIDIA

 

GeForce
 

RTX
 

3060
深度学习框架 Pytorch1. 7. 1

Python 环境 Python3. 6

4. 3　 模型训练

　 　 如图 14 所示,模型训练分为两个阶段。 首先,采用

迁移学习方式利用 VOC 数据集获取 YOLOv5x 的初始权

值文件,然后将其作为改进后的 YOLOv5x 的权值文件,
训练获得针对鸟巢数据集的权值文件。 接着,利用获得

的权值文件对改进的 YOLOv5x 模型进行稀疏训练,筛选

出对此次训练任务贡献度较小的卷积核以及通道,在剪

枝环节进行裁剪,最后进行微调以恢复模型的检测精度,
从而获得最终模型。

输入图片尺寸统一设置为 416×416,模型会根据输

入图片自动调整图片大小,包括训练、稀疏训练、剪枝、微
调阶段。 优化器选择 Adam,以加快收敛速度。 正常训练

共 100 轮,稀疏训练 100 轮。 在超参数设置中,初始学习

率为 0. 001,循环学习率为 0. 2。 在模型训练初期如果不
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图 14　 模型训练流程

Fig. 14　 Model
 

training
 

flow
 

chart

进行预热学习则可能会出现振荡而导致收敛速度较慢的

问题。 因此,在实验中进行 3 轮的预热学习,学习动量为

0. 8,预热初始学习率为 0. 1,置信度阈值为 0. 5。
如图 15 所示,横纵坐标分别表示缩放因子 γ 值以及

训练轮次。 在图 15( a)中,YOLOv5x 的模型未进行稀疏

训练,缩放因子 γ 呈正态分布,且缩放因子的峰值在 1. 0
左右,此时不能对模型进行剪枝操作。 图 15( b)为损失

函数引入 L1 正则化约束,缩放因子的峰值随着稀疏训练

的轮次增加并逐渐向 0 靠近。 依据稀疏训练得到的结果

对 YOLOv5x 模型进行裁剪以达到缩小参数规模的目的。

图 15　 缩放因子 γ 直方图

Fig. 15　 Histogram
 

of
 

scaling
 

factor
 

γ

4. 4　 评测指标

　 　 本文使用精度(P)、召回率( R)、平均精度( AP)、平
均精度均值( mAP) 和平均检测时间以及模型规模大小

作为模型的评价指标。 公式用于计算这些指标:

P =
NTP

NTP + NFP
(18)

R =
NTP

NTP + NFN
(19)

AP = ∫1

0
PdR (20)

mAP =
∑

n

j = 1
AP j

n
(21)

FPS = 1
tavg

(22)

其中,NTP 和 NFP 代表正确和错误识别的样本的值。
NFN 代表未被识别的样本的值,n 代表预测类别的总数,
tavg 代表检测一个图像所需的时间,检测速度以每秒帧数

(FPS)衡量。
如图 16 所示, 二分类参数真正例 ( TP )、 假正例

(FP)、真负例( TN)、假负例( FN) 在本文中的含义分别

是图片真实存在鸟巢且模型正确检测出,图片不存在鸟

巢而模型检测出鸟巢,图片不存在鸟巢且模型未检测出

鸟巢,图片存在鸟巢而模型未检测出鸟巢。

图 16　 二分类参数混淆矩阵示意图

Fig. 16　 Schematic
 

diagram
 

of
 

binary
classification

 

parameters

4. 5　 实验结果与分析

　 　 1)本文针对改进的两个模块以及替换的激活函数进

行消融实验,实验结果如表 2 所示,使用 C2f 模块替换

YOLOv5x 主干特征提取网络中的 C3 之后,模型的检测

精度均值提升了 2. 05%;在替换 C2f 的同时加入 SE 通道

注意力模块,模型的检测精度均值上升了 3. 42%,由于模

型区分通道的不同重要程度之后加强了对信息的提取,
检测精度得到提升;最后将模型的激活函数替换为 Mish
函数,平均检测精度均值提升了 4. 35%。 在此阶段模型

的平均检测精度均值得到了有效的提升,检测速度的下
降和模型体积的增加会在剪枝微调之后提升。
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表 2　 消融实验效果对比

Table
 

2　 Comparison
 

of
 

the
 

effects
 

of
 

ablation
 

experiments
YOLOv5x 改进方案 模型体积 / MB mAP / % 检测时间 / ms

无改进 175. 0 89. 81 18. 2
C2f 239. 1 91. 86 20. 9

C2f+SE 242. 3 93. 23 21. 8
C2f+SE+Mish 242. 3 94. 16 23. 9

　 　 2)实验选取应用比较广泛且基础模型检测精度相对

较高的模型进行实验比较,验证了剪枝最佳百分比、最佳

模型改进组合以及由于光线等自然因素导致的图像不清

晰的模型检测性能。 测试结果如表 3 所示,mAP1 / %一

栏为采集图像均为正常清晰度时的检测平均精度均值;
mAP2 / %一栏为图库添加 10%图像质量不佳(拍摄距离

过远、光线不佳)之后的平均精度均值。 首先,在添加图

像质量不佳数据集时所有模型检测精度均下降,但是改

进后的 YOLOv5x 模型在检测精度和检测速度这两个指

标上都胜过其他模型。 相较于其他模型无论剪枝率高

低,检测精度下降的幅度最低,不超过 4. 49%。 对比选取

的不同模型可以发现,由于 Faster
 

R-CNN 检测模型并未

使用残差网络,所以对信息的提取以及保留不如 YOLO

系列算法,检测时间为 96. 3 ms,推理时间较长,Faster
 

R-
CNN 检测 mAP 为 71. 83%。 基础 YOLOv5x 的检测效果

(检测 精 度、 检 测 速 度 ) 已 经 优 于 YOLOv3 模 型 且

YOLOv5x 模型体积远小于 YOLOv3,但是检测精度依然

达不到要求。 改进型 YOLOv5x 检测精度达到 94. 16%,
是因为在特征提取阶段采用了 C2f 模块替换完 C3 模块

之后,模型提取保留了更多的图像特征,而且在主干特征

提取网络的最后一层添加的 SE 注意力模块能能够将

C2f 保留的信息进行筛选,在相同的学习能力之下关注

对训练任务更加有用的信息。
在对模型进行稀疏训练之后得到的最大剪枝率为

45%,为了取得最佳剪枝百分比,分别对模型进行 20%、
30%、45%的剪枝。 实验结果证明剪枝率为 20%、30%时

的模型参数规模下降的幅度较小,分别为 193. 84、169. 61
 

MB,参数规模依然庞大的同时检测精度并没有得到极大

的改善,检测速度随着剪枝率的降低反而上升。 综上,选
取最大剪枝率 45%为模型的最佳剪枝率。 在微调之后模

型精度依然保持在 93. 25%,其在裁剪掉 45%的模型体积

之后检测精度依然高于基础型的 YOLOv5x,验证了模型

对于检测任务的可行性。

表 3　 模型性能对比

Table
 

3　 Model
 

performance
 

comparison
模型 模型体积 / MB mAP1 / % mAP2 / % mAP 变化值 检测时间 / ms FPS

Faster
 

R-CNN 108 71. 83 65. 85 5. 98 96. 3 10. 38
YOLOv3 235 81. 23 75. 32 5. 91 23. 2 42. 93
YOLOv5x 175 89. 81 85. 14 4. 67 18. 2 54. 95
YOLOv8x 137 89. 75 85. 16 4. 59 18. 6 53. 77

改进 YOLOv5x 242. 3 94. 16 89. 97 4. 19 23. 9 41. 84
剪枝 20%+改进 YOLOv5x 193. 84 93. 56 89. 26 4. 30 20. 3 49. 26
剪枝 30%+改进 YOLOv5x 169. 61 93. 44 88. 97 4. 47 18. 5 54. 05
剪枝 45%+改进 YOLOv5x 133. 27 93. 25 88. 76 4. 49 15. 8 63. 29

　 　 3) 如表 4 所示,设备算力通过每秒浮点运算数

(FLOPs)衡量,模型对设备算力消耗取决于模型的复杂

度,模型的复杂度通过 FLOPs 衡量,与模型的参数量正

相关。 本文为了验证剪枝后的效果,测算了 YOLOv5x 模

型基础型、改进后和剪枝微调后的模型计算量( FLOPs)

与参数量(Params)等参数,完成剪枝微调的 YOLOv5x 模

型的浮点运算数( FLOPs)为 33. 34 G。 与模块改进后相

比,浮点运算数下降了 51. 08%,检测时间仅为 15. 8 ms,
降低了计算量并提升了检测速度,能够大大节约边缘计

算设备的算力成本。
表 4　 参数对比

Table
 

4　 Parameter
 

comparison
参数 模型体积 / MB mAP / % FLOPs / G Params / M 检测时间 / ms

基础模型 175 89. 81 46. 01 87. 24 18. 2
模块改进 242. 3 94. 16 68. 16 120. 88 23. 9

剪枝微调后 133. 2 93. 25 33. 34 63. 21 15. 8

　 　 如图 17 所示,列出了不同模型对 3 类图像(不清晰、
光线不佳、小尺寸目标) 检测的典型案例。 在图 17( a)
中,基础模型对这 3 类图像的敏感度不够高,未能充分学

习图像特征并保存信息流梯度,导致在巡检过程中无法

准确识别出目标。 而在图 17( b)中,算法能够以锚框和

置信度的形式标注出一些基础模型未能识别的目标,但
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这些目标的置信度仍然较低,通常在 0. 5 ~ 0. 8 之间,可
能会出现误检情况,但仍能为巡检工作人员提供警示。
当出现置信度较低、误检等情况时,需要进行云边端 3 端

可视化协作操作,通过重新调整无人机拍摄角度、距离以

进行图像采集,检测效果如图 17(c)所示。

图 17　 检测效果对比

Fig. 17　 Comparison
 

of
 

detection
 

performance

　 　 在表 5 中,定位算法所提到的坐标位置经纬度均为

东经、北纬。 文章使用大疆无人机 Mavic
 

2 在飞行高度为

40、60、80
 

m 采集图片,其中无人机的视野角度为 84°,确
保无人机的相机保持垂直于机身且机身飞行平稳,即拍

摄角度为 90°。 无人机经纬度通过内置的 GPS 导出,而

目标实际经纬度通过手持 GPS 实地测量获取。 实验数

据如表 5 所示,利用本文三维空间定位算法对目标进行

定位计算,计算完成后将经纬度差转化为实地距离差. 飞
行高度 40、60、80

 

m 的误差分别为 9. 158
 

385、10. 020
 

988、11. 443
 

361
 

m。
表 5　 位置信息对比

Table
 

5　 Location
 

Information
 

Comparison
飞行高度 / m 40 60 80
无人机经纬度 24. 858

 

574,102. 853
 

314 24. 858
 

571,102. 853
 

312 24. 858
 

570,102. 853
 

313
目标测算经纬度 24. 858

 

487,102. 853
 

396 24. 858
 

496,102. 853
 

358 24. 858
 

467,102. 853
 

411
目标实际经纬度 24. 858

 

564,102. 853
 

433 24. 858
 

564,102. 853
 

433 24. 858
 

564,102. 853
 

433
距离误差 9. 343

 

460 10. 699
 

991 11. 015
 

778

　 　 如表 6 所示,选取 4 根杆塔作为实验对象,用于验证

定位修正算法的可行性,确认目标位于 3 号杆塔上。 其

中,4 根杆塔的直线距离均超过 100
 

m。 利用 Mavic
 

2 无

人机在 40 m 的飞行高度下,保持无人机机载摄像头垂直

于机身的飞行姿态下采集图像数据。 实验数据如表 6 所

示,通过无人机获取的飞行信息以及传回的图像数据先

测 算 出 目 标 位 置, 得 到 目 标 测 算 位 置 为 北 纬

24. 856
 

476°,东经 102. 856
 

984°,转换为实际距离差约为

9. 32 m。 经过位置修正算法的处理,成功将目标定位至 3
号杆塔。 实验证明,利用本文提出的算法对目标进行定
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位计算,结合利用位置修正算法,能够准确定位目标

位置。
表 6　 位置修正验证

Table
 

6　 Position
 

correction
 

validation
杆塔编号 经度 纬度

1 24. 854
 

522 102. 857
 

452
2 24. 855

 

617 102. 857
 

173
3 24. 856

 

408 102. 856
 

930
4 24. 856

 

926 102. 856
 

415
目标测算位置 24. 856

 

476 102. 856
 

984

5　 结　 论

　 　 本文针对云端数据集中式计算处理效率低;无人机

巡检过程中,可能会遇见光线影响及拍摄角度不佳导致

图像质量不高、拍摄距离过远导致检测目标尺寸较小,使
得目标检测精度下降;鸟巢检测算法精度还可进一步提

升;模型参数规模过大而导致边缘计算设备算力成本高;
目标无法精准定位 5 个问题。 本文提出了一种能够实现

数据交互、目标检测和目标定位的云边端协作系统。 通

过实验验证分析得出以下结论:
1)本文提出的云边端协作系统能够实现 3 个板块之

间的数据交互。 云端系统通过已有的图片数据以及巡检

过程中拍摄的图片负责模型的训练以及更新;终端系统

主要负责采集图片,传递飞行数据并共享采集的图片至

边端设备;边缘计算设备负责接收无人机的飞行数据以

及采集的图片,利用在云端训练好的模型进行目标检测,
且同时进行目标定位。 基于云边端协作系统以无人机为

巡检设备,能够解决由于拍摄角度、光线导致拍摄图像质

量不佳而导致检测效果不佳的问题,同时解决了由于环

境恶劣而巡检人员无法到达而无法及时发现隐患的

问题。
2)本文利用 C2f 模块改进了 YOLOv5x 主干特征提

取网络中的 C3 模块,使其能够拥有更加丰富的梯度流信

息。 在主干特征提取网络的最后一层引入了 SE 通道注

意力模块,该模块能够自主学习区分通道重要性,选择性

地强调有用特征通道并抑制无用的特征通道,保留更多

有用特征信息,从而提升了对小尺寸目标的检测能力。
此外,将 Mish 激活函数替换了原 YOLOv5x 的 SiLu 激活

函数,提升了模型的泛化能力,避免神经网络训练饱和神

经元停止学习。 经过 3 个模块的优化,平均检测精度为

94. 16%,相较于基础 YOLOv5x 提升了 4. 35%。 通过对

收集数据进行扩充增强,避免了正负样本不平衡导致训

练过拟合。 对改进的 YOLOv5x 模型进行稀疏训练,筛选

出对训练任务贡献度较小的 BN 层,进而进行剪枝,裁剪

对应的卷积核以及通道以缩小模型参数规模,加快推理

速度。 剪枝百分比达到 45%;平均检测精度从原始的

89. 81%提升到 93. 25%;检测时间从 18. 2 ms 缩短到

15. 8 ms,使其在保证检测精度的同时加快检测速度。
3)通过三维建模的方法利用无人机的飞行数据,包

括图像、飞行高度、无人机经纬度等信息,使用本文提出

算法计算出目标的实际经纬度,随后结合 GIS 系统和修

正算法,能够准确定位到目标所在杆塔,对巡检的人员有

工程指导性意义。
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