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摘　 要:传统的点云配准算法通过两点云数据之间的特征实现对应点配对,这种方法要求点云具有明确的特征,且存在计算量

大、匹配时间长、配准精度低等问题,而 ICP 算法虽然应用广泛,但对初始值敏感。 对此,提出了一种基于位姿参数估计的多视

角点云配准方法(PPE-ICP)。 首先通过分析误差的分布特性可证明误差极小值存在,使用 A∗搜索算法寻找误差极小值,降低

误差传播的影响,为后续的参数估计提供较好的初值;其次将总体最小二乘估计引入点云配准,在不依赖点云数据的同时,使用

少量参考点就能获得点云从目标坐标系到东北天坐标系的转换矩阵,完成点云位姿矫正,结合迭代最近点算法( ICP),实现点

云精确配准。 通过与 FGR-ICP、FPFH-ICP、NDT-ICP、RANSAC-TrICP 和 KSS-ICP 这 5 种方法在公开数据集和自制实验装置收集

到的点云上进行对比实验,点云数据量为 20
 

000 点时实现配准只需 6. 55
 

s,极大地降低了大数据量下点云配准的时间成本,在
实地点云配准中平移误差最大不超过 0. 03

 

m,旋转误差控制在 0. 07°。 实验结果表明,PPE-ICP 对相似变换、残缺点云和低重

复率具有较强的鲁棒性,在多视角点云配准中具有较高的配准效率和配准精度。
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Abstract:
 

The
 

traditional
 

point
 

cloud
 

registration
 

algorithm
 

achieves
 

corresponding
 

point
 

pairing
 

through
 

features
 

between
 

two-point
 

cloud
 

datasets.
 

This
 

method
 

requires
 

point
 

clouds
 

to
 

possess
 

distinct
 

features,
 

yet
 

it
 

suffers
 

from
 

issues
 

such
 

as
 

high
 

computational
 

complexity,
 

long
 

matching
 

time,
 

and
 

low
 

registration
 

accuracy.
 

Although
 

the
 

ICP
 

algorithm
 

is
 

widely
 

used,
 

it
 

is
 

sensitive
 

to
 

initial
 

values.
 

To
 

address
 

these
 

challenges,
 

we
 

propose
 

a
 

multi-view
 

point
 

cloud
 

registration
 

method
 

based
 

on
 

pose
 

parameter
 

estimation
 

( PPE-ICP).
 

Firstly,
 

by
 

analyzing
 

the
 

distribution
 

characteristics
 

of
 

errors,
 

we
 

demonstrate
 

the
 

existence
 

of
 

error
 

minima.
 

The
 

A ∗
 

search
 

algorithm
 

is
 

then
 

employed
 

to
 

locate
 

these
 

minima,
 

reducing
 

the
 

impact
 

of
 

error
 

propagation
 

and
 

providing
 

improved
 

initial
 

values
 

for
 

subsequent
 

parameter
 

estimation.
 

Secondly,
 

we
 

introduce
 

total
 

least
 

squares
 

estimation
 

into
 

point
 

cloud
 

registration,
 

which,
 

without
 

relying
 

on
 

point
 

cloud
 

data,
 

utilizes
 

a
 

limited
 

number
 

of
 

reference
 

points
 

to
 

obtain
 

the
 

transformation
 

matrix
 

from
 

the
 

target
 

coordinate
 

system
 

to
 

the
 

Northeast-
Up

 

(ENU)
 

coordinate
 

system.
 

This
 

accomplishes
 

point
 

cloud
 

pose
 

correction,
 

and
 

in
 

combination
 

with
 

the
 

Iterative
 

Closest
 

Point
 

(ICP)
 

algorithm,
 

achieves
 

precise
 

point
 

cloud
 

registration.
 

Comparative
 

experiments
 

were
 

conducted
 

with
 

five
 

methods:
 

FGR-ICP,
 

FPFH-ICP,
 

NDT-ICP,
 

RANSAC-TrICP,
 

and
 

KSS-ICP,
 

using
 

both
 

publicly
 

available
 

datasets
 

and
 

point
 

clouds
 

collected
 

from
 

a
 

self-made
 

experimental
 

setup.
 

When
 

dealing
 

with
 

a
 

point
 

cloud
 

dataset
 

of
 

20
 

000
 

points,
 

our
 

PPE-ICP
 

achieves
 

registration
 

in
 

just
 

6. 55
 

seconds,
 

significantly
 

reducing
 

the
 

time
 

cost
 

for
 

point
 

cloud
 

registration
 

with
 

large
 

datasets.
 

In
 

field
 

applications,
 

the
 

maximum
 

translation
 

error
 

is
 

less
 

than
 

0. 03
 

m,
 

and
 

the
 

rotation
 

error
 

is
 

controlled
 

within
 

0. 07°.
 

The
 

experimental
 

results
 

demonstrate
 

that
 

PPE-ICP
 

exhibits
 

strong
 

robustness
 

against
 

similar
 

transformations,
 

incomplete
 

point
 

clouds,
 

and
 

low
 

repetition
 

rates,
 

achieving
 

high
 

registration
 

efficiency
 

and
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accuracy
 

in
 

multi-view
 

point
 

cloud
 

registration.
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0　 引　 言

　 　 三维激光雷达(3D
 

LiDAR)使用激光光束来测量目

标物体的距离、高度和方向,以创建三维空间中的点云

图。 与传统的测量方法相比,它测量速度快、准确度高且

实时性好,在自动驾驶、机器人和无人系统以及城市规划

和建模等方面得到应用[1] 。 激光雷达拍摄的点云图中各

点的坐标是以激光雷达为原点的笛卡尔坐标系,也就是

相对坐标系,需要先进行坐标转换将其映射到绝对坐标

系中才能获得一致性点云,这就是点云配准的过程。 点

云配准最早应用于建筑行业中的建筑信息建模,现在应

用在自动驾驶领域中的三维地图构建、高精地图定位和

姿态估计中[2] 。 如何获得点云图中完整的定位信息并提

高定位精度是近来研究的热点。
常用的点云配准方法有迭代最近点( iterative

 

closest
 

point,
 

ICP)算法、特征点匹配方法。 Zhang 等[3] 为了改进

传统 ICP 会陷入局部最优解的问题,提出了各向异性迭

代最近点(A-ICP)方法使各向异性加权基准配准误差最

小,比较 ICP 和 A-ICP 的各向异性不确定性估计,A-ICP
具有更高的配准精度和更平滑、精确的位移估计。 Wang
等[4]提出一种同步定位和映射算法,使用 VoxelGrid 滤波

器对点云数据进行下采样,结合 ICP 算法和高斯模型进

行粒子更新,将局部地图与全局地图进行匹配,量化粒子

的重要性权重。 但是精度不高。 He 等[5] 提出了基于点

云特征的 ICP 算法(GF-ICP),利用待配准点云的几何特

征寻找两点云间的对应关系,将几何特征引入误差函数

以提高配准精度,避免陷入局部最优解,比传统 ICP 及其

变体具有更快的迭代速度和更大的收敛范围。 王飞鹏

等[6]提出一种基于高斯曲率的 ICP 改进方法,利用高斯

曲率在刚体变换中保持不变的性质对点云中每个点进行

高斯曲率估计以改善 ICP 的运行效率,有效提高其抗噪

声和离群点的能力。 但是算法在物体表面曲率特征过于

复杂的情况下会退化为 ICP 算法。 Lv 等[7] 为解决具有

ICP 的 Kendall 形状空间( kendall
 

shape
 

space,KSS)中的

刚性配准任务,利用 KSS 的不改变形状特性的相似性变

换提出了一种新的配准方法 KSS-ICP 简化配准过程以达

到更好的鲁棒性。 Liu 等[8] 提出了一种基于特征提取和

配准的点云配准算法,提高匹配精度和速度。 但是阈值

的设置需要靠多次实验来人工确定。 周勇等[9] 提出一种

基于总体最小二乘估计的坐标转换的多激光雷达配准算

法,将空间直角坐标系的激光雷达数据转换到地心空间

直角坐标系下,以实现多个激光雷达数据的配准融合,但

是没有给出同一待测物的多个视角下的点云配准实现。
陈慧娴等[10] 整理了基于深度学习的点云配准算法。

综上所述,为了避免 ICP 算法陷入局部最优解需要

提供较好的初始值,初始值的精确程度会影响配准结果,
在点云数据量非常大时实现点到点的配准所耗时间长、
配准精度低。 而基于特征点的匹配方法计算开销大,有
重复场景的情况下配准精度低。 针对此问题,本文提出

了一种基于点云位姿参数估计( pose
 

parameter
 

estimate)
的多视角配准方法,融合 ICP 实现点云精配准,记为

PPE-ICP,不需要进行点云间的特征比对和复杂的迭代

计算,而是直接在测量场景中设置少量参考点获取其激

光雷达数据与 GPS 数据,进行参数估计后可以求得目标

坐标系和东北天坐标系之间的转换矩阵,实现点云位姿

矫正。 实验结果表明,所提方法在点云数据量大且具有

重复性的情况下,提高了配准效率和配准精度。

1　 常用雷达坐标系以及坐标系间的变换

　 　 激光雷达获取的三维点云是以激光雷达中心为原点

的空间直角坐标系,因此要转换到同一坐标系进行点云

配准必然涉及多个参考坐标系及其转换关系[11-12] ,图 1
给出了相关坐标系的示意。

图 1　 ENU、LLA 和 ECEF 坐标系

Fig. 1　 ENU,
 

LLA
 

and
 

ECEF
 

coordinate
 

system

1. 1　 常用坐标系定义

　 　 目标坐标系:原点位于待测目标的质心处,目标的 3
个姿态角横滚(Roll)、偏航( Yaw)和俯仰( Pitch)分别代

表绕 Z、Y 和 X 轴的旋转角度,如图 2 所示给出了本文设

定的目标坐标系。
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图 2　 目标坐标系

Fig. 2　 Target
 

coordinate
 

system

地 心 地 固 坐 标 系 ( earth-centered,
 

earth-fixed
 

coordinate
 

system,
 

ECEF 坐标系):原点位于地球的中心,
X 轴延伸通过本初子午线和赤道线的交点,Z 轴延伸通

过北极,与地球自转轴重合,Y 轴完成右手坐标系,穿过

赤道和 90°经度。 这个坐标系通常用于大地测量、GPS
系统,用于描述地球上不同位置的点的精确三维位置。
ECEF 坐标系提供了一种与地球旋转和自转无关的全局

坐标系。
经纬 高 坐 标 系 ( geodetic

 

latitude,
 

longitude,
 

and
 

altitude
 

coordinate
 

system,
 

LLA 坐标系):原点位于地球的

中心,经度和纬度坐标是球坐标系,而高程坐标是相对于

地球表面的高度,正方向通常是向上。 经度正方向是以

经度 0°的位置为基准,一般认为是格林威治子午线。 纬

度正方向是地球的赤道。 LLA 坐标系有时也称为大地坐

标系。 用于全球定位、导航、地图制图和气象学等应

用中。
东北天坐标系( east-north-up

 

coordinate
 

system,
 

ENU
坐标系):一种局部坐标系,用于描述某个参考点相对于

该点的位置和朝向。 X 轴正方向为东,Y 轴正方向为北,
Z 轴正方向为天,通常用于机器人导航、无人机控制、地
面车辆导航以及其他需要相对位置和姿态信息的应用。
1. 2　 坐标系之间的变换关系

　 　 在三维点云定位中,激光雷达实时采集到的数据是

以激光雷达中心为原点的目标坐标系为基准,而使用

RTK 软件记录的参考点坐标则是以经纬高坐标系为基

准。 为了方便计算,将雷达原点和参考点坐标转换成

ECEF 坐标系下的坐标。 目标坐标系中的坐标需要借助

ENU 坐标系转换成 ECEF 坐标系。
LLA 坐标系下的坐标( lon,

 

lat,
 

alt)转换为 ECEF 坐

标系下的点(x,
 

y,
 

z)的转换矩阵为:
x = (N + alt)cos( lat)cos( lon)
y = (N + alt)cos( lat)sin( lon)
z = (N(1 - e2) + alt)sin( lat)

{ (1)

式中:lon 为经度,lat 为维度,alt 为高程, e 为椭球偏心率

e2 = a2 - b2

a2 ,N = a

1 - e2sin2 lat
为基准椭球体的曲率半

径, a = 6
 

378
 

137 为地球长半, b = 6 356 752. 314 为地球

短半径。
如图 3 所示,可得从目标坐标系转换到 ENU 坐标系

的转换矩阵为[13] :
P′ = R tg·P
R tg =Rx(γ)Ry(ϑ)Rz(φ)=

1 0 0
0 cosγ -sinγ
0 sinγ cosγ

é

ë

ê
ê
ê

ù

û

ú
ú
ú

cosφ -sinφ 0
sinφ cosφ 0

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

cosϑ 0 sinϑ
0 1 0

-sinϑ 0 cosϑ

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(2)
其中, γ,ϑ 和 φ 分别对应俯仰角,偏航角和横滚角,

P′ 为 ENU 坐标系的坐标, P 为目标坐标系中的坐标。
从 ENU 坐标系到 ECEF 坐标系的转换矩阵为[14] :

Δx
Δy
Δz

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
x
y
z

é

ë

ê
ê
ê

ù

û

ú
ú
ú

-
x0

y0

z0

é
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ê
ê
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ù

û

ú
ú
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= ST

e
n
u

é

ë
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ù

û
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ú
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(3)

S=
-sin( lon0) cos( lon0) 0

-sin( lat0)cos( lon0) -sin( lat0)sin( lon0) cos( lat0)
cos( lat0)cos( lon0) cos( lat0)sin( lon0) sin( lat0)

é

ë

ê
ê
êê

ù

û

ú
ú
úú

 

式中:雷达中心点坐标为M0 = (x0,y0,z0)、经纬高坐标为

( lon0, lat0,alt0),M = (x, y,z) 是参考点在 ENU 坐标系

中的坐标。

图 3　 目标坐标系到 ENU 坐标系的转换

Fig. 3　 Conversion
 

of
 

target
 

to
 

ENU
 

coordinate
 

system

1. 3　 坐标转换方法

　 　 在 ENU 坐标系中 Y 轴正方向为北方向,且是地理北

方向。 常用的方向测量仪器是指南针,它的工作原理基

于磁性物质受地球磁场影响的自由旋转,使其一端指向

地磁北,这与坐标转换所需的地理北之间存在误差,而且

指南针会受到磁性物体、电子设备和电缆等干扰源的

影响。
为了减小误差,更准确的获得地理北方向,在测量场

景中设置一参考点,令参考点和原点在同一经度,则两点

连线方向为地理北方向,根据式(4)计算此时的偏航角。

ϑ = arctan y
x

(4)
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两坐标系之间的旋转变换可由欧拉角、四元数或方

向余旋矩阵表示,而使用欧拉角存在奇异性,四元数表示

方式不直观,在多次旋转时由于计算机浮点数精度的限

制会导致误差积累[15] ,因此选用方向余旋矩阵进行旋转

变换。
式(2)中的转换矩阵记为:

R tg = Rx(γ)Ry(ϑ)Rz(φ) =
a1 a2 a3

a4 a5 a6

a7 a8 a9

é

ë

ê
ê
êê

ù

û

ú
ú
úú

(5)

LLA 坐标系和 ECEF 坐标系之间的转换误差主要受

到不同高度系统、仪器误差和大地水准面形状的影响,这
些因素在需要极高精度的应用中可能需要考虑。 而在本

文中,可以将 LLA 坐标转换得到的 ECEF 坐标作为真实

值对式(5)计算出的 ECEF 坐标进行比较,计算出两点间

的欧几里得距离,距离计算公式如下:

d = (x0 - x1) 2 + (y0 - y1) 2 + ( z0 - z1) 2 (6)

2　 多视角点云配准方法

　 　 多视角点云配准是寻找一种空间变换关系使不同视

角下的点云集能合并到一致坐标系下。 点云配准最常使

用的方法是迭代最近点( iterative
 

closest
 

point,
 

ICP ) 算

法,按照一定的约束条件在源点云中找到与目标点云对

应的最邻近点,根据最小二乘法得到空间变换矩阵,最后

迭代至收敛得到最优解。 ICP 算法简单易实现但需要在

粗配准阶段提供较好的初值,否则会陷入局部最优解,同
时计算量增大导致配准效率降低。 针对此问题提出了一

种位姿参数估计的多视角点云配准方法( PPE-ICP),框
图如图 4 所示,具体过程如下:1)分析误差的极值特性,
采用搜索算法寻找极值以减小测量误差的传播影响;2)
基于 TLS 的点云位姿矫正,根据搜索到的三姿态角对点

云位姿进行初步校准,在测量场景中设置参考点,根据参

考点的雷达坐标和 ECEF 坐标进行总体最小二乘估计,
得出两坐标系间的转换矩阵,实现点云位姿校准;3)校准

后在点云中随机选取参考点对旋转矩阵进行迭代优化,
进一步减小误差;4)点云数据进行预处理以增强配准效

果和减小计算量,将测量场景 1 的点云视为基准点云,融
入 ICP 算法进行精配准。
2. 1　 搜索算法

　 　 电子仪器采集数据时存在测量误差,在计算数据时

用有限数据代替无限数据则存在截断误差,这些误差参

与的运算次数越多,被放大的可能性越大,为了降低误差

传播的影响,在位姿矫正之前先用启发式搜索算法寻找

误差极值。
数据采集过程中存在众多噪声源,且大多噪声源满

图 4　 PPE-ICP 框图

Fig. 4　 Block
 

diagram
 

of
 

PPE-ICP

足相互独立假设,根据中心极限定理可知,噪声源的累加

结果服从三维高斯分布,三维高斯概率密度表达式如下:
f χ( ) =

1
(2π) 3 / 2 Σ 1 / 2 exp - 1

2
χ - μ( ) TΣ -1 χ - μ( )( ) (7)

式中: χ 是三维空间的坐标向量, μ 是均值向量, Σ 是协

方差矩阵。 误差分布图如图 5 所示,在谷底存在极小值,
可以通过求导证明存在。

图 5　 误差分布图

Fig. 5　 Error
 

distribution
 

plot

取 f(χ) 的负对数 g(χ) = - log( f(χ))

g χ( ) = - 1
2

χ - μ( ) TΣ -1 χ - μ( ) + 3
2

log(2π) +

1
2

log Σ (8)

这个负对数在最小值处取得最大值,可以通过求二

阶导数(Hessian 矩阵)的正定性来证明极小值存在:
H(χ) = ▽2g(χ) = Σ -1 (9)
如果协方差矩阵 Σ 是正定的,那么在均值 μ 处存在

极小值,而在实际情况中,协方差矩阵通常是正定的。
A∗(A-star)算法是一种启发式搜索算法,用于在状
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态空间中对每一条搜索分支进行评估,选择当前最优的

分支,并从该分支出发继续搜索以达到目标,能够有效减

少不必要的搜索步骤,提高效率。 A∗算法使用如下公式

计算每个节点的优先级:
f(n) = g(n) + h(n) (10)

式中: f(n) 是节点 n 的优先级,g(n) 是从初始点到当前

节点 n 的距离, h(n) 是从当前节点 n 到目标的估计距

离,距离用式(7)计算,循环计算直到 f(n) 最小,此时误

差达到极小值。
A∗算法的优点在于不仅考虑下一步最好的选项,还

考虑了全局上的整体优势,在高斯分布存在不只一个峰

值的情况下,能有效的跳出局部最优解达到全局最小值。
2. 2　 位姿参数估计

　 　 激光雷达位姿由旋转矩阵和平移矩阵组成,旋转量

最多只有 3 个自由度,产生的平移变量可以忽略不计,所
以选择姿态角计算其旋转矩阵。 首先考虑最复杂的有 3
个自由度的情况,即任意姿态的点云位姿参数估计。

从激光雷达坐标系下的雷达坐标 radarxyz = (x1,y1,
z1) 到 ENU 坐标系下 enu = (x2, y2,z2) 的坐标转换过程

可以近似看作一个线性过程,提出数学模型[16] 如下:
Aθ = b
b = [x2,y2,z2] T

θ = [a1,a2,a3,a4,a5,a6,a7,a8,a9] T

A =
x1 y1 z1

0 0 0
0 0 0

0 0 0
x1 y1 z1

0 0 0

0 0 0
0 0 0
x1 y1 z1

é

ë

ê
ê
êê

ù

û

ú
ú
úú

(11)

其中, A 是已知 m×n 观测矩阵, θ 是 n×1 的待估计参数

矢量, b 是 m×1 的观测矢量,n = 1,
 

2,…,
 

N 是选取的参

考点的个数。
最小二乘估计方法用于估计一个或多个参数,使误

差的平方和最小:
Ø = ‖ΔB‖2 = (b - Aθ) T(b - Aθ) (12)
这种方法只适用于向量 b 的误差是 0 均值的高斯白

噪声的少量情况下,才能保证误差的平方和最小。 而实

际中向量 b 存在误差的同时矩阵 A 也存在误差,此时最

小二乘得出的结果并不是最优的,因此将式(11)中的数

学模型修改为[17] :
(A + E)θ = (b + e) (13)
这时使用总体最小二乘来校正 A 和 b 二者内存在的

扰动,式中 e 是扰动向量,E 是扰动矩阵。
数学模型也可以改写作:

([ - b,A] + [ - e,E])
1
A

é

ë
êê

ù

û
úú = 0 (14)

等价为:
(B + D)z = 0 (15)

式中:增广矩阵 B 和扰动矩阵 D 均为 m×n+1 维矩阵,z
为 n+1×1 向量。

当 m=n 时,未知参数个数与方程个数相等,且矩阵

A 非奇异,可直接代入求解。
当 m<n+1 时,方程是欠定的,存在无穷多个解,总体

最小二乘方法可以给出最小范数解。
当 m>n+1 时,方程是超定的,此时可以求出最优最

小二乘近似解。
本文主要研究超定情况,首先计算增广矩阵 B 的

SVD,并存储右奇异值 V:

B̂ = U∑ p
VH (16)

式中: ∑ p
= diag(σ1,σ2,…,σp,0,…,0) 是对角矩阵。

确定增广矩阵 B的有效秩 p,即参数向量中只有 p 个

是线性独立的。
根据最小二乘原理,求最小二乘解等价于使代价函

数极小化,代价函数 f(α) 定义如下:

f(α) = αH ∑
10 -p

i = 1
[ B̂( i:p + i)] HB̂( i:p + i)[ ] α (17)

定义 (P + 1)·(P + 1) 矩阵 S(p) :

S(p) = ∑
10 -p

i = 1
[ B̂( i:p + i)] HB̂( i:p + i) (18)

如果令 S -1(p) 为矩阵S(p) 的逆矩阵,则解向量 α仅取

决于逆矩阵 S -1(p) 的第 1 列。 易知,欲求的 TLS 解 θp =
[θTLS(1),θTLS(2),…,θTLS(p)] T 由式(19)给出。

θTLS( i) = S -1(p)( i + 1,1) / S -1(p)(1,1) (19)
其中, i = 1, 2,…, p。 这个解为最优最小二乘近

似解。
如果在测量时将激光雷达水平放置,这时俯仰角和

横滚角为 0,只需要估计偏航角这一个自由度完成点云

位姿校准。 式(11)中矩阵 A,θ 修改为:

A =
x1 z1 0
0 0 y1

z1 - x1 0

é

ë

ê
ê
êê

ù

û

ú
ú
úú

θ = [cosϑ sinϑ 1] T (20)
这时位姿矫正的复杂度大幅降低,只需要两个参考

点就能完成参数估计,但由于地面不是绝对水平且,简单

的定义 y2 = y1 会产生额外的误差。
在激光雷达放置水平后,将其上抬一定的角度,使待

测物体位于测量场景中,此时只有横滚角为 0,需要估计

偏航角和俯仰角两个自由度,式(11) 中矩阵 A 不变,旋
转矩阵 R 和参数矢量 θ 修改为:

R∗ = Rx(γ)Ry(ϑ) =

cosϑ 0 sinϑ
sinγsinϑ cosγ - sinγcosϑ

- cosγsinϑ sinγ cosγcosϑ

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
a1′ a2′ a3′
a4′ a5′ a6′
a7′ a8′ a9′

é

ë

ê
ê
êê

ù

û

ú
ú
úú
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θ = [a1′,a2′,a3′,a4′,a5′,a6′,a7′,a8′,a9′] T (21)
这种情况下的估计精度会高于 1 个自由度时的估计

精度,但会小于 3 个自由度的估计精度。
2. 3　 点云配准

　 　 在点云配准过程中,点云数据密度越大所需要的坐

标转换时间越长,计算内存越大,所以在进行配准前需要

进行滤波和体素下采样来减少数据量,提高算法的计算

效率,还能保存所扫描物体的关键轮廓[18] 。
 

激光雷达扫

描物体时,除了主体部分还有大量的地面信息和远处的

离群点,这些无关信息点与主体部分有明确的分界,彼此

之间不重叠,因此可以使用直通滤波器对点云滤波,只保

留特定区域的点。 首先,从点云图确定 3 个维度上的过

滤范围,并将其设置在滤波器中;其次,滤波器遍历输入

点云中的每个点,检查其 3 个维度的坐标是否在指定的

过滤范围中,如果在范围内则去除点,不在则保留;最后

输出滤波后的点云。
体素下采样示意图如图 6 所示,图中实心的点为采

样后的点。 利用八叉树将点云空间划分为若干个体素网

格,各体素是一个 N × N × N 立方体,覆盖了点云的每个

区域, 对 于 有 m 个 点 的 体 素, 计 算 其 质 心 Pc =
xc yc zc( ) :

xc =
∑

m

i = 1
x i

m

yc =
∑

m

i = 1
y i

m

zc =
∑

m

i = 1
zi

m

ì

î

í

ï
ï
ï
ï
ïï

ï
ï
ï
ï
ï

(22)

选取其质心作为代表,用所有体素质心点组成的集

合形成下采样后的点云。

图 6　 体素下采样示意图

Fig. 6　 Schematic
 

diagram
 

of
 

voxel
 

downsampling

预处理完成后使用 ICP 算法进行精配准。 基于欧氏

距离的 ICP 算法先在目标点云 P 中取点集 p,在源点云

Q 中取出对应点集 q,通过式(6)计算两点之间的欧式距

离,使其最小;通过粗配准得到的转换矩阵对目标点云的

点集 p 进行旋转和平移变换得到新的点集 p’;再次计算

点集 q 与点集 p’之间的欧式距离 d;如果距离 d 小于设

置好的阈值或者达到设定好的迭代次数,则停止迭代计

算,否则在源点云中重复取出点集,直至满足停止条件。

3　 实验结果

　 　 实验平台的硬件环境和软件环境如表 1 所示。 选取

快速 全 局 配 准 ( FGR )-ICP [19] 、 快 速 点 特 征 直 方 图

(FPFH)-ICP [20] 、正态分布变换(NDT)-ICP [21] 、RANSAC-
TrICP [22] 、KSS-ICP [23] 这 5 种点云配准领域应用较为广泛

的方法进行对比试验,所提方法为 PPE-ICP。 分别在点

云数据集和采集到的多视角点云上进行配准实验,从误

差分析、配准效果、配准效率 3 个方面进行评价。
表 1　 实验条件

Table
 

1　 Experimental
 

conditions
名称 版本 / 配置

三维激光雷达 Titan
 

M1
RTK 定位模块 WTRTK-4GR
上位机 CPU i5-7500
操作系统 Windows

 

10
编程语言 MATLAB

点云数据库 斯坦福公开数据库 ModelNet40

3. 1　 配准算法对比

　 　 选取斯坦福和 ModelNet40 中的点云作为源点云,对
源点云作相似变换,旋转角>30°,位移量随机。 斯坦福模

型中不同配准结果如图 7 所示,点云数在几十万左右。
ModelNet40 模型中不同配准结果如图 8 所示, 来自

ModelNet40 的测试数据集包含 1
 

235 个模型(由于有许

多相似的模型,选择抽样率为 15%的模型),点云数是

10
 

000。 图中正对着的是源点云,经过随机角度旋转后

生成目标点云。
　 　 在表 2 和 3 中,比较了不同方法的配准度评价结果,
MSE 是误差均方的平均值,RMSE 是均方根误差的平均

值,MAE 是平均绝对误差的平均值。 计算对应点的欧几

里得距离,生成 MSE、RMSE 和 MAE 的值。

表 2　 斯坦福模型中不同配准方法的评价

Table
 

2　 Evaluations
 

for
 

different
 

registration
methods

 

in
 

Stanford
 

models
方法 RMSE MSE MAE

FPFH-ICP 6. 24×10-4 3. 29×10-6 5. 73×10-4

FGR-ICP 8. 46×10-5 4. 46×10-7 7. 96×10-5

NDT-ICP 2. 56×10-3 1. 32×10-5 2. 23×10-3

RANSAC-TrICP 6. 72×10-4 3. 54×10-6 3. 97×10-4

KSS-ICP 6. 32×10-4 3. 97×10-7 5. 95×10-4

PPE-ICP(Our) 6. 28×10-5 3. 31×10-7 5. 71×10-5
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图 7　 斯坦福模型中不同配准结果的比较

Fig. 7　 Comparisons
 

of
 

different
 

registration
 

results
 

in
 

Stanford
 

models

图 8　 ModelNet40 模型中不同配准结果的比较

Fig. 8　 Comparisons
 

of
 

different
 

registration
 

results
 

in
 

ModelNet40
 

models

表 3　 ModelNet40 模型中不同配准方法的评价

Table
 

3　 Evaluations
 

for
 

different
 

registration
methods

 

in
 

ModelNet40
 

models

方法 RMSE MSE MAE
FPFH-ICP 1. 16×10-4 1. 16×10-6 1. 03×10-4

FGR-ICP 1. 01×10-4 1. 01×10-6 8. 48×10-5

NDT-ICP 1. 13×10-2 1. 09×10-4 9. 51×10-3

RANSAC-TrICP 5. 77×10-3 5. 75×10-5 3. 28×10-3

KSS-ICP 1. 35×10-2 1. 82×10-4 1. 34×10-2

PPE-ICP(Our) 6. 14×10-6 6. 14×10-8 5. 09×10-6

　 　 观察表 2、3 和图 7、8 中的配准结果和评价指标,对
于 FGR-ICP,结合了快速全局配准和 ICP 算法,配准效果

好,这种方法对于斯坦福模型中大规模点云数据具有更

高的准确性;对于 FPFH-ICP,在几组点云中都存在明显

的错位,由于特征直方图的提取存在随机性,需要多次配

准取平均值;对于 NDT-ICP,在几组点云配准中效果最

差,NDT 算法在构建正态分布模型时会受到栅格大小选

择的影响,如果栅格选择不当,可能会影响配准效果,需
要通过实验调整以获得最佳参数,相对来说使用不便;对
于 RANSAC-TrICP,存在没有完全重合的点,且和 NDT-
ICP 一样对参数敏感,需要通过实验确定区分阈值和迭

代次数;对于 KSS-ICP,引入核稀疏采样策略,在处理大

规模点云时尤其有效。 在处理 ModelNet40 模型中的小

点云时配准效果较差;对于 PPE-ICP,在不同点云数和不

同结构的点云中均取得较好的配准结果。
3. 2　 配准时间对比

　 　 点云密度的不同会影响配准过程中基于距离的度

量。 因此,不同密度的配准效率对配准方法至关重要。
本文使用点云下采样方法改变斯坦福数据集中 Lucy 点

云的点密度,构建源点云数据集。 在源点云数据集中加

入随机相似变换,参数与对比配准效果中设置的一样。
使用原始数据集作为目标点云数据集。 表 4 是基于这两

个数据集收集到的点云配准时间。
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表 4　 不同方法下不同尺度点云的时间成本

Table
 

4　 Time
 

cost
 

of
 

point
 

clouds
 

with
 

different
scales

 

for
 

different
 

methods
方法 5

 

000 10
 

000 50
 

000 100
 

000 200
 

000
FPFH-ICP 6. 93 8. 92 37. 04 70. 29 107. 2
FGR-ICP 4. 19 5. 34 35. 11 84. 28 252. 54
NDT-ICP 4. 75 5. 02 7. 29 12. 351 24. 79

RANSAC-TrICP 5. 39 6. 34 13. 83 22. 76 34. 74
KSS-ICP 5. 81 36. 54 40. 13 43. 72 57. 98

PPE-ICP(Our) 4. 41 4. 55 4. 95 5. 57 6. 55

　 　 对比表 4 中记录的结果,FGR-ICP 在进行全局配准

时能得到更好的配准效果,但是时间成本随着点云数据

量的增加而增大;FPFH-ICP 在特征提取过程中消耗更多

的计算资源;而本文提出的 PPE-ICP 方法在粗配准中加

入总体最小二乘估计,不需要进行大量的特征对比来寻

找点之间的对应关系即可完成点云位姿矫正,通过 4 个

对应参考点计算出两点云之间的转换矩阵后,无论点云

数据量多少都只需要最简单的乘法就能完成点云配准,
极大地减低了大规模点云配准的时间成本。
3. 3　 残缺点云配准

　 　 点云重复度是影响点云配准方法的重要因素,当点

云重复度低时,意味着点云数据集中相似的点较少。 这

可能导致在特征提取和匹配阶段难以找到足够的对应

点。 特征匹配是点云配准中的关键步骤,它直接影响配

准的精度和稳定性。 当对应点数量不足或分布不均匀

时,配准算法可能难以准确地计算出两个点云之间的变

换关系,从而导致配准失败或结果不准确。 图 9 是残缺

点云的配准结果,表 5 是残缺点云 6 种不同配准方法的

评价。
在第 1 组点云中将完整点云 Armadillo 通过直通滤

波的方式去除部分点云,生成两个残缺部分不同的点云,
在其中一个点云中加入随机变换作为目标点云,图中左

边的点云是源点云,右边的点云是目标点云。 第 2 组选

择重复度高的 TetahedronMultiple 点云,截取源点云左上

角的半圆柱作为目标点云。 观察图 9 结果可得,FPFH-
ICP、NDT-ICP 和 RANSAC-TrICP 在两组残缺点云配准中

都存在错位;FGR-ICP 和 KSS-ICP 都存在大量未完全重

合的点;PPE-ICP 在两组点云中都存在少量未重合的点。
对比表 5 中数据,FGR-ICP 比 KSS-ICP 配准效果更好,但
是所需时间更长,PPE-ICP 无论是配准效果还是配准效

率都要高于其他算法。

图 9　 残缺点云不同配准结果的比较

Fig. 9　 Comparison
 

of
 

different
 

registration
 

results
 

of
 

incomplete
 

point
 

clouds

表 5　 残缺点云中不同配准方法的评价

Table
 

5　 Evaluation
 

of
 

different
 

registration
methods

 

for
 

incomplete
 

point
 

clouds
方法 RMSE MSE MAE TIME

FPFH-ICP 0. 009
 

1 5. 25×10-5 0. 006
 

9 11. 41
FGR-ICP 0. 004

 

8 2. 77×10-5 0. 003
 

4 11. 27
NDT-ICP 0. 006

 

1 3. 51×10-5 0. 004
 

6 9. 89
RANSAC-TrICP 0. 007

 

8 3. 75×10-5 0. 004
 

4 9. 67
KSS-ICP 0. 005

 

4 2. 97×10-5 0. 004
 

5 9. 07
PPE-ICP(Our) 0. 001

 

3 7. 48×10-6 0. 001
 

1 8. 91

3. 4　 实地点云数据配准

　 　 实验所用系统如图 10 所示,图 10( a) 中上位机系

统[16] 承担数据接收、数据存储、数据处理等功能[4] 。 其

中激光雷达驱动模块负责控制激光发射、接收反射信号、
数据处理、时序同步和系统控制,而 LORA 无线接收器用

于接收和解码 LoRa 无线信号。 图 10( b)中为实验所用

的参考物体,十字架的中心为参考点。 在测量场景中移

动十字架能获取任一点的 LLA 坐标和 ECEF 坐标。
1)点云预处理

在点云配准之前需要进行预处理,体素下采样指定
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图 10　 实验系统

Fig. 10　 Experimental
 

system

　 　 　 　 　

网格大小为 0. 3。 降采样前后的数据规模对比如表 6 所

示。 相比于直通滤波后的点云数,体素下采样后测量场

景 1 中的点云数降低了 95%,测量场景 2 中的点云数降

低了 97%。 图 11 给出了原始点云、滤波后点云和体素下

采样后的点云对比,在直通滤波后只留下建筑物主体,而
体素下采样后点云点数明显减少,但是基本轮廓不变。

表 6　 点云降采样前后对比

Table
 

6　 Point
 

cloud
 

downsampling
 

comparison
原始点云数 直通滤波后 体素下采样后

场景 1 87
 

120 41
 

055 1
 

969
场景 2 173

 

342 61
 

970 1
 

305

　 　 2)误差分析

将对比方法与 PPE-ICP 分别应用于多视角点云配

准,根据建筑物天花板的法向量计算各方法平均旋转误

差,根据天花板棱角处顶点的距离计算平移误差。 各配

准方法的平均旋转误差、平均平移误差如表 7 和 8 所示。
从表 7 和 8 可以看出,所提方法的平均参数误差最小,
FPFH-ICP 方法的平均参数误差最大。 对于所配准区域

　 　 　 　

图 11　 点云预处理

Fig. 11　 Point
 

cloud
 

preprocessing

表 7　 各方法的平均旋转误差

Table
 

7　 Average
 

rotation
 

error
 

of
 

each
 

method
方法 X / ( °) Y / ( °) Z / ( °)

FPFH-ICP 0. 553 0. 979 0. 272
FGR-ICP 0. 519 0. 335 0. 253
NDT-ICP 0. 467 0. 913 0. 222

RANSAC-TrICP 0. 522 0. 354 0. 246
KSS-ICP 0. 331 0. 242 0. 197

PPE-ICP(Our) 0. 069 0. 050 0. 095

这种重复性较低的点云,FPFH 等粗配准方法在点云带

有重复区域的情况下寻找匹配点对的能力差。 而所提方

法在粗配准阶段使用总体最小二乘估计,依靠少数已知

点估计所有点的坐标转换矩阵,不需要提取两点云之间

的特征进行配准,在不依赖于点云数据的情况下即可完

成点云位姿矫正。

表 8　 各方法的平均平移误差

Table
 

8　 Average
 

translation
 

error
 

of
 

each
 

method

方法 X / m Y / m Z / m
FPFH-ICP 0. 572 0. 184 0. 789
FGR-ICP 0. 058 0. 062 0. 209
NDT-ICP 0. 556 0. 054 0. 413

RANSAC-TrICP 0. 888 0. 264 2. 093
KSS-ICP 0. 139 0. 103 0. 253

PPE-ICP(Our) 0. 037 0. 040 0. 022
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　 　 为了验证参数估计的效果,分别选取自由度为 1、2
和 3 进行参数估计,根据此时估计出的结果对几个已知

点进行位姿矫正,计算此时测量值和真实值之间的平均

平移误差,结果记录如表 9 所示。 自由度为 1 时,考虑的

情况最少,精确度最差。 自由度为 2 时,使用陀螺仪测量

角度时存在误差。 自由度为 3 时考虑了 3 个姿态角的测

量误差,精度最高。

表 9　 不同自由度时的平均平移误差

Table
 

9　 Average
 

translation
 

error
 

of
 

each
 

method
under

 

different
 

degrees
 

of
 

freedom
自由度 X / m Y / m Z / m

1 13. 459 5. 906 3. 602
2 1. 343 1. 441 1. 701
3 0. 021 0. 032 0. 031

　 　 3)配准效果分析

为了更直观的验证所提算法的有效性,FPFH-ICP 方

法、FGR-ICP 方法、NDT-ICP 方法、RANSAC-TrICP 方法、
KSS-ICP 方法与所提方法在实地点云数据中的配准效果

如图 12 所示。 从图 12( a) ~ ( c) 可以看到,对于具有重

复性但重叠程度较小的点云,5 种方法都无法完全还原

出建筑物原型,在整个区域存在着不同程度上的错位。
从图 12(d)可以看到,PPE-ICP 方法配准后得到的建筑

物模型较为完整,重叠部分能够很好的配准,非重叠部分

也能补充完整,没有出现大面积的错位。

4　 结　 论

　 　 本文提出一种结合位姿参数估计和 ICP 算法的点云

配准方法(PPE-ICP),有效提高了点云具有重复性且重

叠程度低时的点云配准效果。 使用位姿参数估计能在不

依赖两点云数据的情况下,依靠提前设置的少量参考点

估计整个点云的转换矩阵,不需要复杂的迭代运算,提高

了配准效率;同时考虑到误差的影响,在参数估计之前,
提出使用搜索算法寻找误差极小值,降低噪声的传播影

响,在参数估计时使用总体最小二乘估计考虑到激光雷

达的测量误差和定位软件的测量误差,增强了配准效果。
但是,所提方法在精配准环节仍有未匹配成功的对应点

对且需人工确定参考点,后续可以对精配准方法和参考

点定位做进一步优化,提高配准精度和效率。
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