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基于非参数模型与粒子滤波的锂电池 SOH 估计∗
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摘　 要:健康状态(state
 

of
 

health,
 

SOH)是电池管理系统的重要参考依据,准确的 SOH 估计对保证电池安全稳定运行具有重大

意义,其中提取可靠有效的健康特征描述电池老化状态以及构建精确稳定的估计模型是目前面临的主要问题。 为了提高 SOH
估计精度,提出了一种基于模糊熵和粒子滤波(particle

 

filter,
 

PF)的锂离子电池 SOH 估计方法。 首先,通过分析电池老化过程

中的放电电压数据,提取模糊熵值作为电池的老化特征;其次,基于代谢灰色模型(metabolic
 

grey
 

model,
 

MGM)和时间卷积网络

(temporal
 

convolutional
 

network,
 

TCN)构建描述锂电池老化特征的非参数状态空间模型;最后,通过 PF 实现锂电池 SOH 的闭环

估计。 此外,利用 NASA 锂电池数据集对所提出的 SOH 估计方法进行了验证,并与该领域其他方法进行对比实验。 结果表明,
所提方法最大估计误差在 5%左右,相比于同类方法其估计精度提升了约 50%,且在不同训练周期数条件下表现出较好的鲁棒

性,验证了所提方法的可行性与优越性。
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Abstract:
 

The
 

state
 

of
 

health
 

( SOH)
 

is
 

an
 

important
 

index
 

for
 

battery
 

management
 

system,
 

and
 

accurate
 

SOH
 

estimation
 

is
 

of
 

great
 

significance
 

for
 

ensuring
 

safe
 

and
 

stable
 

operation
 

of
 

battery.
 

Extracting
 

reliable
 

and
 

effective
 

health
 

features
 

to
 

describe
 

the
 

aging
 

state
 

of
 

battery
 

and
 

constructing
 

accurate
 

and
 

stable
 

estimation
 

model
 

are
 

the
 

main
 

problems
 

we
 

face
 

at
 

present.
 

In
 

order
 

to
 

improve
 

the
 

accuracy
 

of
 

SOH
 

estimation,
 

a
 

fuzzy
 

entropy
 

and
 

particle
 

filter
 

(PF)
 

based
 

SOH
 

estimation
 

method
 

for
 

lithium-ion
 

battery
 

is
 

proposed.
 

Firstly,
 

the
 

fuzzy
 

entropy
 

value
 

is
 

extracted
 

as
 

the
 

aging
 

characteristic
 

of
 

the
 

battery
 

by
 

analyzing
 

the
 

discharge
 

voltage
 

data
 

during
 

the
 

aging
 

process.
 

Secondly,
 

a
 

non-parametric
 

state-space
 

model
 

to
 

describe
 

the
 

aging
 

characteristics
 

of
 

lithium-ion
 

battery
 

is
 

constructed
 

based
 

on
 

the
 

metabolic
 

grey
 

model
 

(MGM)
 

and
 

the
 

temporal
 

convolutional
 

network
 

(TCN).
 

Finally,
 

the
 

closed-loop
 

SOH
 

estimation
 

of
 

lithium-
ion

 

battery
 

is
 

realized
 

by
 

PF.
 

In
 

addition,
 

the
 

proposed
 

SOH
 

estimation
 

method
 

is
 

validated
 

using
 

the
 

NASA
 

lithium-ion
 

battery
 

datasets
 

and
 

compared
 

with
 

other
 

methods
 

in
 

the
 

field.
 

The
 

results
 

show
 

that
 

the
 

maximum
 

estimation
 

error
 

of
 

the
 

proposed
 

method
 

is
 

about
 

5%,
 

the
 

estimation
 

accuracy
 

is
 

improved
 

by
 

about
 

50%
 

compared
 

with
 

similar
 

methods,
 

and
 

the
 

proposed
 

method
 

exhibits
 

good
 

robustness
 

under
 

different
 

training
 

cycles,
 

which
 

verifies
 

the
 

feasibility
 

and
 

superiority
 

of
 

the
 

proposed
 

method.
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0　 引　 言

　 　 随着当今世界经济的快速发展,能源需求不断增加。

不可再生资源的大量消耗,导致能源短缺及环境恶化问

题日益严重,在很大程度上限制了社会的可持续发展,因
此大力发展清洁高效的新能源技术刻不容缓。 2020 年

12 月 21 日,根据《新时代的中国能源发展》白皮书,我国
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将大力发展新能源及相关产业,其中电动汽车是可持续

发展的重要选择[1-2]
 

。 国务院也在关于印发节能与新能

源汽车产业发展规划的通知中指出,发展新能源汽车是

坚持绿色发展理念、适应气候改变的重要举措[3]
 

。 锂离

子电池以其长循环寿命、高能量密度和低自放电率等优

异特性,已广泛应用于电动汽车,并成为其主要动力来

源[4-6]
 

。 然而,锂电池在反复使用的过程中,性能会逐渐

退化直至失效,影响着相关设备的正常运行,严重时还会

导致重大事故[7]
 

。 健康状态(state
 

of
 

health,SOH)估计可

以跟踪电池的老化趋势,研究锂电池的 SOH 估计是保障

电池安全运行的重要手段[8-9]
 

。
近年来对锂电池 SOH 的估计方法基本可分为经验

公式法、模型法以及数据驱动法[10-11]
 

。 经验公式法通常

基于锂电池历史运行数据构建老化经验公式,然后通过

数理统计的方法来估计电池的老化行为[12]
 

。 例如,Guha
等[13]

 

提出了一种基于多项式和指数函数的混合老化模

型,该模型结合了粒子滤波,可以实现对锂离子电池健康

状态的准确估计。 但该类方法的估计精度依赖于所构建

的经验公式,由于公式的建立对锂电池老化数据的要求

较高,导致该方法难以在部分实际工况中应用。 模型法

主要通过建立电池老化机理模型,通过模型仿真电池内

部的化学反应,从而实现对锂电池 SOH 的估计[14]
 

。 如

Zhang 等[15]
 

基于固态电解质界面膜增厚导致电池性能老

化,建立了单粒子模型来模拟锂电池内部的机理演变过

程。 但是用来描述锂电池老化的机理模型复杂度较高,
相关特性参数众多,导致建立完善的机理模型难度大,因
此模型法的应用受到一定程度的影响与限制[16]

 

。 数据

驱动法避免了对锂电池的老化机制进行复杂分析,其直

接从监测到的锂电池状态量中获取锂电池的老化信息及

规律,并且在实时性和预测精度等方面表现优秀,被广泛

用于多个领域的锂电池 SOH 估计问题[17] 。 数据驱动法

通常包括两个步骤:健康特征提取和模型构建,即提取能

反映锂电池老化状态的特征量和开发数据驱动估计模

型。 目前,多数锂电池 SOH 估计研究通常利用电池容量

或内阻作为电池的健康特征。 比如 Sun[18]
 

直接将电池容

量衰减曲线作为评估电池老化的健康特征,并使用支持

向量回归(SVR)预测电池的 RUL。 Wang 等[19]
 

将不同温

度下电池内部的电荷转移电阻作为健康特征来估计电池

SOH。 虽然电池容量和内阻都是直接表征电池老化状态

的重要指标,但是需要精密的仪器设备和专业的测试人

员,还需排除外界干扰,因此无法满足在线采集和实时预

测的要求,很难进行工程应用[20]
 

。 除此之外,一些学者

也关注了其他健康指标,Yang 等[21]
 

提出了一种基于充电

曲线的高斯过程回归模型,分析了充电电压曲线中各参

数随循环次数的变化规律,选取了恒流充电时间等电池

容量相关性较强的特征,以提高 SOH 估计精度。 Yayan

等[22] 通过采集恒流充电参数等间接健康特征,并设计了

基于深度神经网络的预测模型用于快速充电设备。
Lianbing 等[23]

 

将放电差分电压曲线的峰值、放电时间和

搁置时间作为健康特征,采用 Elman 神经网络估计电池

的 SOH,实验结果验证了所提方法的有效性。 综上所述,
考虑到健康特征提取的可靠性和稳定性,大部分现有工

作都是从原始的电压或者电流等曲线中直接提取健康特

征,这样容易受到外界采样噪声的干扰,直接影响健康特

征提取的准确性。 此外,大部分预测模型都为开环系统,
且普遍采用单一的数据驱动方法,容易受到外界干扰,鲁
棒性弱,无法补偿输出误差。 在实际应用中,外界条件的

差异也会对模型的预测精度产生影响, 导致稳定性

下降[24-25]
 

。
针对上述问题,本文提出了一种基于融合数据驱动

模型的锂离子电池 SOH 闭环估计方法。 首先,分析了锂

电池的历史老化特性,基于放电电压数据提取模糊熵值

作为描述锂电池老化程度的健康特征;其次,基于代谢灰

色模型( metabolic
 

grey
 

model,MGM)建立 SOH 估计状态

转移方程以描述锂电池容量的递推关系,并采用时间卷

积网络(temporal
 

convolutional
 

network,TCN)作为观测方

程映射锂电池容量与健康特征的关系;最后,以健康特征

为观测量,结合所构建模型采用粒子滤波( particle
 

filter,
PF)实现对锂电池健康状态的反馈校正,通过 SOH 的闭

环估计提升模型估计精度。 与该领域其他方法的对比实

验结果证明了该方法的有效性及优越性。

1　 健康特征提取

1. 1　 电池老化数据集

　 　 为了验证所提锂电池 SOH 估计方法的性能,本文采

用来自 NASA 艾姆斯卓越预测中心的数据存储库选取的

锂离子电池数据集。 该数据集使用的是市场上可见的

18650 锂离子电池,在环境温度为 24 ℃ 的条件下进行了

锂电池的充放电实验。 实验首先采用 1. 5
 

A 的恒定电流

模式对电池进行充电,直到电池电压达到 4. 2
 

V,接着采

用恒定电压模式对电池进行充电,直到充电电流下降到

20 mA,则充电完成,并得到电池端电压、充电温度、充电

电流和数据采集时间。 接着以 2A 的恒定电流放电,直到

电池电压分别降至放电截止电压时实验停止,并记录电

池端电压、放电温度、放电电流、采集数据时间和电池的

容量。 表 1 给出了选取数据集的实验数据信息。
图 1 表示 B18 电池任选一次充放电循环的电压电流

曲线,可以看出恒流充电—恒压充电—恒流放电过程的

电压和电流变化。
图 2 为 4 块锂离子电池的容量值随充放电循环次数

增加逐渐衰减的曲线。 图中显示电池在循环充放电过程
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中偶尔会出现容量增生现象,体现出电池容量曲线的非

线性和非平稳性,从而增加了电池 SOH 估计的难度,所
以有必要开发可靠的方法提取描述电池老化程度的健康

特征。
表 1　 电池实验数据信息

Table
 

1　 Battery
 

eexperiment
 

data
 

information
编号 温度 / ℃ 充电电流 / A 放电电流 / A 截止电压 / V
B5
B6
B7

B18

24 1. 5 2

2. 7
2. 5
2. 2
2. 5

图 1　 B18 电池充放电电压电流曲线

Fig. 1　 B18
 

Battery
 

charging
 

and
 

discharging
voltage

 

and
 

current
 

curves

图 2　 电池容量衰退曲线

Fig. 2　 Battery
 

capacity
 

decline
 

curves

1. 2　 基于模糊熵的健康特征提取

　 　 锂电池的老化过程取决于诸多因素,如负载电流、温
度等。 本文考虑放电电压变化引起的特征信息变化,进
行健康特征提取。 以 B18 号电池的放电电压曲线为例

(如图 3 所示),随着充放电过程的进行,电池的放电电

压先缓慢下降,再急剧下降,且每次充放电循环放电电压

曲线下降的转折点都有所不同。 而熵是泛指某些物质系

统状态的一种量度,体现了系统变化的剧烈程度。 因此,

引入放电电压的模糊熵值作为电池的健康特征,能够有

效反映电池老化过程,同时也体现出电池老化过程中电

压随时间变化逐渐衰减的趋势。

图 3　 B18 电池不同周期的放电电压曲线

Fig. 3　 B18
 

battery
 

discharge
 

voltage
 

curves
 

with
 

different
 

cycles

之所以采用模糊熵形式提取特征,是因为其相较于

其他相关方法有优势。 首先,和较为常规的健康特征,如
恒流充电时间[26]

 

、最高放电温度[27]
 

、恒压充电时间[28]
 

等

相比,模糊熵可以更全面地描述数据集的特征信息并考

虑信息的不确定性程度,并且由于模糊熵针对的是多个

循环中电池放电电压老化的规律性,单个循环中可能出

现的采样误差并不影响模糊熵值的提取,抗干扰能力较

强[29]
 

。 进一步地,和其他常见的熵值指标(如样本熵)相

比,模糊熵值能够随着参数线漂移时,模糊熵能够通过均

值运算,去除基线漂移的影响,向量的相似性也不再由绝

对幅值差确定,而由模糊函数形状决定,从而将相似性度

量模糊化。 因此,从电池健康特征提取的可靠性和稳定

性角度出发,本文提取模糊熵作为描述电池老化状态的

特征。
其次,基于实验数据进一步将本文方法与上述健康

特征进行对比来验证其优势。 在对比中,结合锂电池实

验数据集并采用 Pearson 相关性分析方法进行比较,结果

如图 4 所示。 可以发现,本文所提放电电压的模糊熵值

与电池老化状态的相关程度最高。 综上所述,本文选择

模糊熵值作为电池的退化特征是更加有效且可靠的,因
此本文选用模糊熵值作为电压信号的特征。

模糊熵是在样本熵的基础上通过引入一种指数函

数———模糊隶属度函数得到的,其测度值的大小反映了

新模式出现的可能性,如果测度值越大,那么新模式出现

的概率就越高,也就是说序列的复杂度越高。 模糊熵算

法的基本原理为:首先对于给定的 N 维时间序列 [u(1),
u(2),…,u(N)] ,其中 N 表示序列长度。 定义相空间维

数 m(m ≤ N - 2)和相似容限度 r ,重构相空间:
X( i) = [u( i),u( i + 1),…,u( i + m - 1)] - u0( i),
i = 1,2,…,N - m + 1 (1)
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图 4　 不同健康特征相关系数对比

Fig. 4　 Comparison
 

of
 

correlation
 

coefficients
for

 

different
 

health
 

characteristics

u0( i) = 1
m∑

m-1

j = 0
u( i + j) (2)

接着引入模糊隶属度函数为:

A(x) =
1,x = 0

exp[ - ln(2)( x
r

) 2],x > 0{ (3)

对于 i = 1,2,…,N - m + 1,计算:
Am

ij = exp[ - ln(2)·(dm
ij / r)

2],j = 1,2,…,N - m + 1,
j ≠ i (4)

其中, d = d[X( i),X( j)] = max
k∈(0,m- 1)

( | u( i + k - 1) -

u( i) | - | u( j + k - 1) - u( j) | ) 为窗口向量 X( i) 和

X( j) 之间的最大绝对距离。 针对每个 i , 求其平均

值,得:

Cm
i ( r) = 1

N - m ∑
N-m+1

j = 1,j≠i
Am

ij (5)

定义 ϕm( r) = 1
N - m + 1 ∑

N-m+1

i = 1
Cm

i ( r) ,原时间序列的

模糊熵(FuzzyEn)为:
FuzzyEn(m,r) =lim

N→∞
[lnϕm( r) - lnϕm+1( r)] (6)

针对有限数据集,模糊熵估计为:
FuzzyEn(m,r,N) = lnϕm( r) - lnϕm+1( r) (7)
通常情况下,相空间维数 m 取 1 或 2。 相似容限度 r

取值过大会丢失较多信息,取值较小又不能理想地估计

出系统的统计特性,所以一般取 0. 1 - 0. 25SD( x),其中

SD(x)为原时间序列的标准差。
以 B18 电池为例,计算每次循环下放电电压数据的

模糊熵值,如下图 5 所示。 从图中可以看出,放电过程中

的模糊熵随充放电循环次数的增加而逐渐增加,这一特

性可以作为锂电池性能衰退过程的重要衡量指标。
采用 Pearson 相关系数来衡量电池放电电压数据的

模糊熵值与电池容量的相关程度。 相关系数的取值是

[ -1,1],其绝对值越大,则表明两个变量的相关程度越

高。 通常情况下,当相关系数绝对值在 0. 8 ~ 1. 0 之间

时,表示变量之间极强相关;在 0. 6 ~ 0. 8 之间时,表示变

量之间强相关;在 0. 4 ~ 0. 6 之间时,表示变量之间中等

图 5　 B18 电池放电电压的模糊熵值

Fig. 5　 Fuzzy
 

entropy
 

value
 

of
 

discharge
 

voltage
 

of
 

B18
 

battery

程度相关;在 0. 2 ~ 0. 4 之间时,表示变量之间弱相关;在
0 ~ 0. 2 之间时,表示变量之间极弱相关或无相关。 从表

2 中可以看出,4 个电池的放电电压模糊熵值与其容量的

相关程度都很高,尽管 B5 电池放电电压模糊熵值与容量

的相关系数最小,但也为中等程度相关。 因此,本文选择

提取放电电压数据的模糊熵值作为电池老化过程的健康

特征。

表 2　 放电电压熵值-容量 Pearson 相关系数

Table
 

2　 Pearson
 

correlation
 

coefficient
 

between
discharge

 

voltage
 

entropy
 

and
 

capacity
电池 B5 B6 B7 B18

相关系数 0. 507
 

0 -0. 774
 

7 -0. 806
 

7 -0. 992
 

4

　 　 值得注意的是,虽然本文实验验证部分所采用的

NASA 电池数据集属于恒流放电模式,但本文所提方法

对于负载工作模式改变所导致的非恒流工况也能获得较

好的预测精度。 具体原因如下:当电池处于非恒流放电

状态时,其放电电压曲线相较于恒流状态呈现出下降速

率加快的变化,如参考文献[30]中的图 1 及文献[31]
 

中

的图 3 ~ 5 所示。 但是本文所提健康特征(模糊熵),是针

对多个老化循环中放电电压下降速率提出的,其与非恒

流放电状态下的放电电压曲线特征一致,所以在非恒流

工况下提取放电电压曲线的模糊熵值可以满足预测要

求。 此外,在非恒流工况下,随着充放电循环次数的增

加,电池容量逐渐下降,充放电时间逐渐减少,放电电压

下降速率逐渐加快,其放电电压曲线依然会呈现出明显

的区分特性,而本文所提出的方法是针对不同循环周期

下的放电电压曲线实施的。 模糊熵主要由序列的概率密

度函数决定即数据的分布特性,不管是恒流模式还是非

恒流模式,其不同循环周期的分布特性都是具有区分性

的。 因此,本文的方法依然适用于负载工作模式不同的

实际场景中。
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2　 基于 MGM-TCN-PF 的锂电池 SOH 估计

2. 1　 非参数状态空间模型构建

　 　 为描述锂电池状态量之间的转移,建立状态转移方

程为:
xk = f(xk-1) + wk (8)

式中:k 为时刻; xk 为当前时刻状态量; xk-1 为上一时刻

状态量; wk 为过程噪声,描述了系统的各种不确定性影

响因素。
为了实现锂电池状态从上一时刻到下一时刻的准确

预测,本文将 MGM 作为状态转移方程,其原理为:假设

窗口中包含 n 个历史数据,利用这些数据进行灰色建模

后预测出一个新数据,然后,将窗口向前滑动,将最早期

的历史数据移除,加入最新预测的数据。 这样,窗口内的

数据量保持不变,但数据不断更新,从而减小了历史数据

对系统的影响。 具体算法步骤如下:
给定时间序列 X(0) = (x(0)

1 ,x(0)
2 ,…,x(0)

n ) ,为挖掘序

列 X(0) 的变化趋势,对该序列进行一次累加变换得 X(1) =

(x(1)
1 ,x(1)

2 ,…,x(1)
n ) ,其中 x(1)

k = ∑
k

i = 1
x(0)
i ,k = 1,2,…,n 。

则 MGM 的一阶方程表达式为
dx(1)

k

dt
+ ax(1)

k = b ,式中: a

为灰色发展系数,代表时间序列发展态势; b 为灰色作用

量,反映外部因素作用大小。

根据最小二乘原理估计出参数的最优解 â 和 b̂:

â

b̂

é

ë

ê
êê

ù

û

ú
úú
= (BTB) -1BTYn (9)

式中:

B =

- 1
2

[x(1)
1 + x(1)

2 ] 1

- 1
2

[x(1)
2 + x(1)

3 ] 1

… …

- 1
2

[x(1)
n-1 + x(1)

n ] 1

é

ë

ê
ê
ê
ê
ê
ê
ê
êê

ù

û

ú
ú
ú
ú
ú
ú
ú
úú

,Yn =

x(0)
2 x(0)

3 … x(0)
n[ ]

T (10)

将计算出的 â、b̂ 代入 MGM 的一阶方程表达式中,并
还原可得:

x̂(0) k+1 = (x(0)
1 - b̂

â
)(e - âk - e - â(k -1) ) (11)

若单纯使用 MGM 预测电池后续容量,虽然考虑了

那些随着时间推移相继进入系统的扰动因素带来的影

响,使得整个系统一直处于更新和发展的过程中,但是模

型无法学习到电池每次充放电循环的特征,而只是单纯

地对容量衰减序列进行数据拟合,不能精确估计电池下

一时刻的状态。 因此引入特征量,使得模型能够更好地

学习电池的非线性老化过程。
为实现电池状态量到其健康特征的映射,建立观测

方程为:
yk = h(xk) + vk (12)

式中: xk 为当前时刻状态量; yk 为当前时刻特征值; vk 为
观测噪声,代表了观测过程中的不确定性观测误差。

由于神经网络具有较好的自学习性和自适应性,因
此采用 TCN 网络作为观测方程。 TCN 网络作为卷积神

经网络的变体结构,克服了传统卷积神经网络缺乏对长

时间序列数据的记忆模块问题,采用扩张卷积结构、因果

卷积结构和残差块结构,使其在处理时间序列数据方面

性能优于门控循环单元(gatedrecurrent
 

unit,GRU)与反向

传播网络(back
 

propagation,BP)等这些传统的网络模型。
在 TCN 网络中,因果卷积指的是第 i层中 t时刻的数

据只依赖于第 ( i - 1) 层 t时刻及其以前时刻数据。 扩张

卷积指的是允许进行卷积操作时的输入存在间隔,即在

输入数据上进行跳步操作,可以自主决定输入数据之间

的距离,扩大了感受野。 扩张因果卷积的表达式为:

F( i) = ∑
k-1

j = 0
h( j)x( i - dj) (13)

式中: F( i) 为对输入序列第 i 个元素的卷积结果; h( j)
为卷积核;k 为卷积核大小;d 为扩张因子。

残差块结构是为了解决网络层数加深后引起的各种

问题而提出的,其核心思想是引入一个跨层连接的恒等

映射,即认为冗余层不应该使网络性能退化。 如果新增

加的层不学习,只是复制浅层网络的特征,那么这种情况

下理论上深层网络的性能至少跟浅层网络一样,不会退

化。 残差块的输出 o 表达式为:
o = Activation(x + F(x)) (14)

式中: x 为残差块的输入; F(x) 为残差。 当残差为 0 时,
至少网络性能不会降低,而实际上残差一般不为 0,这就

表示堆叠层往往都能学到新的特征信息,从而使网络拥

有更好的表现。
2. 2　 基于 PF 的 SOH 估计

　 　 针对系统构建 MGM-TCN-PF 方法,提取放电电压数

据的模糊熵值作为观测值,通过 PF 算法实现电池 SOH
闭环估计。 首先,基于 MGM-TCN 混合模型构建 PF 算法

的动态状态空间模型为:
Ck = MGM(Ck-1) + wk

Fk = TCN(Ck) + vk{ (15)

式中: Ck 和 Ck-1 分别为第 k 时刻和 k-1 时刻电池的容量

值; Fk 为第 k 时刻电池的健康特征值。
利用动态状态空间模型来预测电池容量,可以根据
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建议分布函数进行随机采样,得到 N 个粒子,即:

x̂ i
k ~ q x i

k | x̂
i
k -1,yk( ) = p x̂ i

k | x̂
i
k-1( ) ,i = 1,2,…,N

(16)

式中: x̂ i
k 为第 k 时刻的第 i 个粒子, yk 为观测值,

q(x i
k x̂ i

k -1,yk) 为建议分布密度, p x̂ i
k x̂ i

k-1( ) 为先验分布

密度。
计算各粒子权重:

w i
k ∝ w i

k -1p yk x̂ i
k( ) (17)

式中: w i
k 为第 k 时刻第 i 个粒子权重。

设 w~ i
k 为归一化后的粒子权重,则归一化的权重为:

w~ i
k =

w i
k

∑
N

i = 1
w i

k

(18)

最后进行状态估算:

x̂k = ∑
N

i = 1
xkw

i
k (19)

将新的电池容量估计值加入第一步的容量历史数据

序列中,并删除最旧的容量数据,创建新的容量历史序

列,然后重复执行该算法,不断更新和优化模型,从而形

成 SOH 闭环估计框架。 所构建 MGM-TCN-PF 算法如算

法 1 所示。
算法 1. 基于 PF 的 SOH 估计算法

输入:容量训练集 {C1 ,C2 ,…,Ck} ,健康特征训练集 {F1 ,F2 ,…,
Fk} ,PF 初始参数:粒子数 N,迭代次数 T,过程噪声 Q,观测噪声 R
输出: k + 1 时刻及以后的 SOH 值
1. 　 基于式(8)建立状态方程
2. 　 基于式(12)建立观测方程
3. 　 for

 

i = 1:Ndo
4. 　 　 根据式(16)随机采样 N 个粒子
5. 　 　 w( i) = 1 / N
6. 　 end

 

for
7. 　 for

 

k = 1:Tdo
8. 　 　 　 for

 

i = 1:Ndo
9. 　 　 　 　 Ck+1 = MGM(Ck) + Q
10. 　 　 　 　 Fk+1 = TCN(Ck+1 ) + R
11. 　 　 　 　 基于式(17)计算各粒子权重
12. 　 　 　 　 重采样,重新设置粒子权重,得到新的粒子集合
13. 　 　 　 基于式(19)输出 xk+1

14. 　 end
 

for
15.

 

end
 

for

2. 3　 方法框架

　 　 本文提出的 SOH 估计方法框架如图 6 所示。 该框

架主要涉及 3 个主要阶段:
1)电池老化数据及健康特征提取。 选择电池的放电

电压数据的模糊熵值作为电池的老化特征量,并利用

Pearson 相关系数对放电电压模糊熵及其容量之间的相

关性进行验证,证明可以选择其作为电池老化过程的健

康特征;

2)预测模型构建。 由于 MGM 建模所需数据量少,
并可根据锂电池老化状态的变化更新模型参数,因此用

MGM 模型作为状态转移方程,对电池下一时刻状态量进

行预测,TCN 网络在处理时间序列方面有优势,用 TCN
模型作为观测方程,对电池下一时刻状态量对应的特征

值进行预测;
3)电池 SOH 估计。 锂电池的退化过程具有复杂的

非线性和非高斯特性,因此引入 PF 算法,利用第一步提

取出的老化特征值作为观测值,在 PF 的框架基础上融入

MGM 与 TCN,构建 MGM-TCN-PF 算法来实现锂电池的

SOH 估计。 对估计出的电池状态量进行校正并反馈至状

态转移方程,形成闭环的 SOH 估计框架。

3　 实验与分析

3. 1　 误差衡量指标

　 　 为了更准确地评估 MGM-TCN-PF 方法在 SOH 估计

方面的精度,引入多个评价指标,包括均方误差 MSE、均
方根误差 RMSE、平均绝对误差 MAE 以及平均绝对百分

比误差 MAPE 以衡量误差的大小,即:

MSE = 1
N ∑

N

j = 1
(y j -ŷ j)

2 (20)

RMSE =
∑

N

j = 1
(y j -ŷ j)

2

N
(21)

MAE = 1
N ∑

N

j = 1
ŷ j - y j (22)

MAPE = 1
N ∑

N

j = 1

ŷ j - y j

y j

(23)

式中: y j 为第 j 个循环下的 SOH 真实值; ŷ j 为第 j 个循环

下的 SOH 估计值;N 为 SOH 评估的循环总次数。 MSE、
RMSE、MAE 及 MAPE 的值越接近 0,则表示所提方法的

估计性能越好。
3. 2　 估计结果与分析

　 　 基于 NASA 电池数据集,本节进一步分析并讨论所

提出的 MGM-TCN-PF 锂电池闭环 SOH 估计方法的实验

结果,并与基于间接健康指标的高斯过程回归( gaussian
 

process
 

regression, GPR ) [28]
 

模型、 基于变分模态分解

(variational
 

mode
 

decomposition,VMD)与长短期记忆网络

(long
 

short-term
 

memory,LSTM) 的模型( VMD-LSTM) [32]
 

模型这两种方法作对比。 通常锂电池的 SOH 定义为电

池当前容量与标称容量的百分比[33]
 

,表达式为:

SOH =
Qnow

Qnoted

× 100% (24)

式中: Qnow 为电池当前容量; Qnoted 为电池标称容量。



·154　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 38 卷

图 6　 基于 MGM-TCN-PF 方法的 SOH 估计流程

Fig. 6　 Flow
 

chart
 

of
 

SOH
 

estimation
 

based
 

on
 

MGM-TCN-PF
 

method

其中,B5,B6,B7,B18 电池的 SOH 估计结果分别如

图 7 所示。 从图中可以看出,MGM-TCN-PF 方法的估计

结果能够更准确地跟踪电池 SOH 的变化趋势,且比 GPR
模型与 VMD-LSTM 模型的估计效果稳定。 VMD-LSTM
模型描述 SOH 退化趋势的效果波动较大,并且在估计的

前半阶段偏差较为明显。 另外,GPR 模型的跟踪效果虽

然较为平稳,但整体来说 SOH 估计值偏离真实值较远,
估计效果仍不理想。 尽管电池充放电循环次数的增加会

导致 MGM-TCN-PF 估计 SOH 的偏差略微增加,但总体而

言,估计误差仍然较小,能够满足要求。
3 种数据驱动模型的性能评价指标由表 3 所示。 从

表中可以得出,本文所提闭环融合模型 MGM-TCN-PF 的

　 　 　 　

估计误差均低于单个模型 GPR 及 VMD-LSTM, 其中

VMD-LSTM 模型的估计误差低于 GPR 模型。 以 B5 电池

为例,MGM-TCN-PF 模型估计的 B5 电池的 MAE、RMSE、
MSE、MAPE 值相较于 GPR 模型与 VMD-LSTM 模型分别

改进了 55. 94%、44. 35%、80. 00%、78. 79% 和 40. 36%、
37. 50%、63. 64%、70. 47%。 分析表中数据可以发现,当
以前 50%的循环数据训练 MGM-TCN-PF 模型时,4 个电

池的估计结果 MAE、RMSE、MAPE 值都在 5%内,MSE 都

在 1%内,误差较小。 从上述分析中可以看出,本文所提

方法 MGM-TCN-PF 的误差最小,表明本文方法具有较好

的预测性能以及本文所提模型在估计精度方面的优越

性、精确性及可靠性。

表 3　 3 种模型 SOH 估计误差

Table
 

3　 Three
 

types
 

of
 

model
 

SOH
 

estimation
 

errors %

指标
VMD-LSTM HI-GPR MGM-TCN-PF

B5 B6 B7 B18 B5 B6 B7 B18 B5 B6 B7 B18
MAE

RMSE
MSE

MAPE

2. 80
3. 20
0. 11
4. 03

2. 34
3. 33
0. 11
3. 36

2. 42
2. 66
0. 07
3. 23

3. 12
3. 82
0. 15
2. 21

3. 79
4. 51
0. 20
5. 61

4. 62
5. 66
0. 32
7. 31

2. 78
3. 28
0. 11
3. 79

3. 40
4. 13
0. 17
2. 45

1. 67
2. 00
0. 04
1. 19

1. 73
2. 07
0. 04
2. 61

1. 61
2. 01
0. 04
2. 19

2. 86
3. 21
0. 10
4. 06

3. 3　 鲁棒性分析

　 　 为了分析所提 SOH 估计方法在不同训练循环数下

的鲁棒性,基于 B5、B6、B7 电池数据集分别采用前 84、
104 及 124 个老化循环数据对预测模型进行预训练,基

于 B18 电池数据集分别采用前 66、86 及 106 个老化循环

数据进行预训练,剩余的循环数据用于 SOH 估计。 实验

结果如图 8 所示,随着循环次数的增加,SOH 估计结果开

始出现偏差。 训练循环数量越少,所提出的方法对于电
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池 SOH 的估计误差越大。 这种误差的增加主要发生在

电池老化的后期,随着循环次数的增加而逐渐增加。 当

B5、B6、B7 的估计起点为 84,B18 的估计起点为 66 时,本

文方法的跟踪效果虽然到后半段有偏差,但总体来看估

计误差较小,能够较好地跟踪电池 SOH 的老化趋势。

图 7　 针对 4 种电池数据集的 SOH 估计结果对比

Fig. 7　 Comparison
 

of
 

SOH
 

estimation
 

results
 

for
 

four
 

battery
 

datasets
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图 8　 不同训练循环数的实验结果

Fig. 8　 Experimental
 

results
 

of
 

different
 

training
 

cycles

　 　 分析表 4 数据可以发现,文中所提方法在不同起始

估计点的估计误差整体都较小,并且随着起始估计点的

往后推移,估计模型训练样本数量的增加,估计结果的

MAE、RMSE、MSE、MAPE 值越来越小,估计结果更加精

确。 以 B5 电池为例,模型训练循环数为 124 时,MAE 值

为 1. 04%,MSE 值为 0. 02%,RMSE 值为 1. 39%,MAPE
值为 0. 78%; 模型训练循环数为 104 时, MAE 值为

1. 64%,MSE 值为 0. 05%,RMSE 值为 2. 14%,MAPE 值

为 1. 21%;模型训练循环数为 84 时,MAE 值为 1. 67%,
MSE 值 为 0. 04%, RMSE 值 为 2. 00%, MAPE 值 为

1. 19%。 可以看出随着模型训练循环数的减少, MAE
值、MSE 值、RMSE 值及 MAPE 值逐渐增大。 即使训练样

本数量减少会增加估计结果的误差,但最大也都基本稳

定在 5%左右,仍能表现出良好的估计性能,证明该模型

具有较强的鲁棒性。 综合分析可得,该 SOH 估计模型具

有高度可靠性和稳定性,可以用于实际应用。

4　 结　 论

　 　 锂离子电池 SOH 的精准估计在确保其安全可靠运

行方面发挥着重要作用。 本文基于电池的放电电压数据

分析,提取模糊熵值作为健康特征,并基于 MGM 和 TCN
构建了锂电池 SOH 估计模型,最后引入 PF 提出了一个

闭环 SOH 估计方法。 该方法是将电池的健康特征与

MGM 及 TCN 模型融合,首先利用 MGM 预测电池下一时

　 　 　 　 　 　表 4　 不同预测起点模型 SOH 估计误差

Table
 

4　 SOH
 

estimation
 

error
 

of
 

different
 

prediction
starting

 

point
 

models %

数据集 / 预测起点 MAE RMSE MSE MAPE
B5 / 84

B5 / 104
B5 / 124
B6 / 84

B6 / 104
B6 / 124
B7 / 84

B7 / 104
B7 / 124
B18 / 66
B18 / 86

B18 / 106

1. 67
1. 64
1. 04
1. 73
3. 32
1. 69
1. 64
1. 61
1. 47
2. 86
2. 60
3. 19

2. 00
2. 14
1. 39
2. 07
3. 58
1. 94
2. 01
1. 99
1. 71
3. 21
3. 35
3. 40

0. 04
0. 05
0. 02
0. 04
0. 13
0. 04
0. 04
0. 04
0. 03
0. 10
0. 11
0. 12

1. 19
1. 21
0. 78
2. 61
5. 19
2. 69
2. 25
2. 19
2. 04
4. 06
3. 73
4. 60

刻的状态量,接着训练 TCN 神经网络作为 PF 的观测方

程,将提取的模糊熵值作为 PF 的观测量,最后利用 PF
对估计值进行校正,提升了模型的估计精度。 最后,基于

NASA 公开数据集 4 种不同型号的电池老化数据进行了

所提方法的有效性验证分析,并对比了另外两种现有的

数据驱动 SOH 估计方法。 从实验结果可以看出,本方法

在多种不同老化工况下都能取得较好的 SOH 估计结果,
且估计误差较小。 此外,本方法在不同数量训练数据下

也表现出了较好的估计精度,最大估计误差基本维持在
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5%左右,证明模型有着较高的鲁棒性及稳定性。 考虑到

实际应用中电池充放电过程的随机性,后续工作将尝试

利用更贴合实际情况的电池数据来验证本文所提方法的

适用性。
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