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SOH estimation of lithium-ion battery based on
non-parametric model and particle filter

He Ning Yang Ziqi Qian Cheng

(School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)

Abstract: The state of health (SOH) is an important index for battery management system, and accurate SOH estimation is of great
significance for ensuring safe and stable operation of battery. Extracting reliable and effective health features to describe the aging state of
battery and constructing accurate and stable estimation model are the main problems we face at present. In order to improve the accuracy
of SOH estimation, a fuzzy entropy and particle filter (PF) based SOH estimation method for lithium-ion battery is proposed. Firstly,
the fuzzy entropy value is extracted as the aging characteristic of the battery by analyzing the discharge voltage data during the aging
process. Secondly, a non-parametric state-space model to describe the aging characteristics of lithium-ion battery is constructed based on
the metabolic grey model (MGM) and the temporal convolutional network (TCN). Finally, the closed-loop SOH estimation of lithium-
ion battery is realized by PF. In addition, the proposed SOH estimation method is validated using the NASA lithium-ion battery datasets
and compared with other methods in the field. The results show that the maximum estimation error of the proposed method is about 5%,
the estimation accuracy is improved by about 50% compared with similar methods, and the proposed method exhibits good robustness
under different training cycles, which verifies the feasibility and superiority of the proposed method.

Keywords : lithium-ion battery; state of health (SOH) ; fuzzy entropy; particle filter (PF) ; closed-loop estimation
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Fig.3 BI18 battery discharge voltage curves with different cycles
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S5 5T ) 2 A B R AR 1 = i 2 91 ( gaussian
process regression, GPR) SRR I T AR Ay RS A R
(variational mode decomposition, VMD) 54 JG 111012 M 2%
(long short-term memory , LSTM ) f{ 45 %1 ( VMD-LSTM ) 1!
FERL X PIFR T R VR XS L, 38 5 B A B 9 SOH 5 N HE
Tt AT AR A A Rk N

now

SOH =

x 100% (24)

noted

X Q,, MHEMCYHTEE; Q,,,, NHEMIRFRE R,



<154 - B & 5 g R 55 38 &

| e T

: WA T L s WA S R RS : :

! il il |l

: : 1

i N o

; o CE T RCEY: e g 2 SV E SENiR ¢ Pl

1 [

i * Y i—___r_:::::::::f:::::::l_: U”%% sk :i
I ! ! il
! Rt R L MGM 8 YIgETONH o
: ¢ : : 2O = (x(®@ l;)( —ak ) F(i):z D EO=E) *ﬁ:
| : I | Fa =" ==X —e o= "
l \~§ i i X, =MGM(x, ) . AC?:??;E:F(X)) #l
: A T S {_i_ pomemsel N !
| ] R 75

i v s UL R — s
| s s S e ama|
: FuzzyEn =Ing™ (r)~Ing™" (r) : : X = ;ka;, =1
i v # | ! i a
| ] . : | l S 1
N D=l B T - ol
I e i : [ <+— BERATIRT H!
I 2 _ g1 fii

Kl 6 T MGM-TCN-PF J5 i) SOH fliit i e
Fig. 6 Flow chart of SOH estimation based on MGM-TCN-PF method

Hrf B5,B6,B7,B18 Hijth () SOH At 145 5 4351l 4n
& 7 Fis, ME AT LA H, MGM-TCN-PF J5 32 A it 11
45 BLAE NS S ETR R F b SOH iy A8k ia %, H L GPR
B 5 VMD-LSTM #5288 /) fl 11 850U R 52 2 . VMD-LSTM
PAIHE IR SO iR ALl M ssC R i s Kk, HLAEAf Y
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flfiit iR 22 % F 84S B A GPR & VMD-LSTM, H:
VMD-LSTM BRIl iR 225 T GPR #4Y, Dh B5 Hith
S, MGM-TCN-PF #2741 H (%) BS HLIt Y MAE . RMSE |
MSE MAPE fHAH# T GPR £ 5 VMD-LSTM £ %1 53 5]
Mtk T 55.94% 44.35% . 80. 00% . 78. 79% Fi1 40. 36% .
37.50% .63. 64% 70. 47% ., 43 Hr & o8 vl L& B, 24
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WAk TH45 B MAE RMSE \MAPE {E#B87F 5% N , MSE #
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Table 3 Three types of model SOH estimation errors %
sk VMD-LSTM HI-GPR MGM-TCN-PF
AR B5 B6 B7 B18 B5 B6 B7 B18 BS B6 B7 B18
MAE 2. 80 2.34 2.42 3.12 3.79 4.62 2.78 3.40 1.67 1.73 1. 61 2. 86
RMSE 3.20 3.33 2. 66 3.82 4.51 5. 66 3.28 4.13 2.00 2.07 2.01 3.21
MSE 0.11 0.11 0.07 0.15 0.20 0.32 0.11 0.17 0.04 0.04 0.04 0.10
MAPE 4.03 3.36 3.23 2.21 5.61 7.31 3.79 2.45 1. 19 2.61 2.19 4. 06
3.3 BREMESH T BI8 ALt B A 7 SR T 66 .86 J 106 1~ LA

JT AR R SOH AT B AE A RN ZRAE PR 80 R
A& FEPE, 36T B5 . B6 . B7 B Wb B8 5 43 00l SR FH AT 84,
104 J2 124 422 ALAG PRECHE o 390 000 A5 750 k45 FU0I &5, ik

BE AT BN SR AR PR R ECE T SOH it sede
LUK 8 Fr , BEE PRI, SOH it 4 2RIt
U B 22 . DN ZRDAFA R B /D | B gl B0 05 % T
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Fig.7 Comparison of SOH estimation results for four battery datasets
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Table 4 SOH estimation error of different prediction

starting point models %0
Bl A/ TN 1 MAE RMSE MSE MAPE
B5/84 1. 67 2.00 0.04 1. 19
B5/104 1. 64 2.14 0.05 1.21
B5/124 1. 04 1.39 0.02 0.78
B6/84 1.73 2.07 0.04 2.61
B6/104 3.32 3.58 0.13 5.19
B6/124 1.69 1.94 0.04 2.69
B7/84 1. 64 2.01 0.04 2.25
B7/104 1.61 1.99 0.04 2.19
B7/124 1.47 1.71 0.03 2.04
B18/66 2.86 3.21 0.10 4.06
B18/86 2.60 3.35 0.11 3.73
B18/106 3.19 3. 40 0.12 4. 60

ZIRPIRZS i HE YN 2R TCN e 28450 PF UL 7
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XAGTHE AT IIE 32T TR TR L . e 26 T
NASA IR 4 FhAS [8] 525 A ri it 2 A B8l AT 1
FI B0 85 AT R R 7 M, I X E T 53 S W R BA 1Y
Bl 373l SOH fliit ik, WSS R n] LUA th, A Tr ik
TEZ A FE AL 00 N #RRE MU A 19 SOH AT H45 2R,
BHAGTHRZEE N AN, A T7 A A R BRI 2R Kt &
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