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双边剪钢板自动对中系统研究
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摘　 要:双边剪切工艺中钢板对中过程需要人工目视激光线进行余量观测,操作复杂且主观判断影响数据准确性。 为此设计基

于机器视觉的双边剪钢板自动对中系统,依赖沿辊道分布的多组面阵相机进行辊道钢板状态数据采集,利用现场测量数据及钢

板目标宽度标定出两条虚拟剪切线,摆脱对传统辅助激光线的依赖。 同时系统中采用级联的钢板对象提取模型,采用先粗后精

的分步提取思想,提升钢板边缘检测精度。 依据钢板轮廓位置与虚拟剪切线位置关系换算出移动距离,从而控制磁力对中装置

完成钢板对中过程,提升双边剪工艺的自动化程度。 实际应用结果表明,系统对于钢板宽度测量误差小于 5
 

mm,系统自动控制

对中误差小于 10
 

mm,满足企业自动控制需求。
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Abstract:
 

In
 

the
 

double-sided
 

shearing
 

process,
 

the
 

steel
 

plate
 

alignment
 

process
 

requires
 

manual
 

visual
 

observation
 

of
 

the
 

laser
 

beam
 

allowance,
 

which
 

is
 

complex
 

in
 

operation
 

and
 

subjective
 

judgments
 

that
 

affect
 

data
 

accuracy.
 

Therefore,
 

in
 

this
 

paper,
 

an
 

automatic
 

alignment
 

system
 

for
 

double-sided
 

steel
 

plate
 

shearing
 

based
 

on
 

machine
 

vision
 

is
 

designed,
 

which
 

relies
 

on
 

multiple
 

sets
 

of
 

area
 

array
 

cameras
 

distributed
 

along
 

the
 

roller
 

table
 

to
 

collect
 

the
 

status
 

data
 

of
 

the
 

steel
 

plate
 

on
 

the
 

roller
 

table.
 

Using
 

on-site
 

measurement
 

data
 

and
 

the
 

target
 

width
 

of
 

the
 

steel
 

plate,
 

two
 

virtual
 

cutting
 

lines
 

are
 

calibrated,
 

eliminating
 

the
 

dependence
 

on
 

traditional
 

auxiliary
 

laser
 

lines.
 

At
 

the
 

same
 

time,
 

a
 

cascaded
 

steel
 

plate
 

object
 

extraction
 

model
 

is
 

adopted
 

in
 

the
 

system,
 

and
 

the
 

step-by-step
 

extraction
 

idea
 

of
 

“rough
 

first
 

and
 

then
 

fine”
 

is
 

adopted
 

to
 

improve
 

the
 

accuracy
 

of
 

steel
 

plate
 

edge
 

detection.
 

The
 

movement
 

distance
 

is
 

converted
 

based
 

on
 

the
 

relationship
 

between
 

the
 

steel
 

plate
 

contour
 

position
 

and
 

the
 

virtual
 

shear
 

line
 

position,
 

thereby
 

controlling
 

the
 

magnetic
 

centering
 

device
 

to
 

complete
 

the
 

steel
 

plate
 

centering
 

process
 

and
 

improving
 

the
 

automation
 

of
 

the
 

double
 

sided
 

shear
 

process.
 

The
 

actual
 

application
 

results
 

show
 

that
 

the
 

system
 

has
 

a
 

measurement
 

error
 

of
 

less
 

than
 

5
 

mm
 

for
 

the
 

width
 

of
 

steel
 

plates,
 

and
 

an
 

automatic
 

control
 

centering
 

error
 

of
 

less
 

than
 

10
 

mm,
 

meeting
 

the
 

automatic
 

control
 

requirements
 

of
 

enterprises.
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0　 引　 言

　 　 钢板生产后处理过程中,需要经过双边剪切工艺流

程将钢板两侧的边缘部分切除。 这其中要尽量保持钢板

双边剪切量相同,从而减少卷边、切废、剪切不足等问题

的产生[1-2] 。 目前钢铁企业主要采用人工目视激光线的

方式,判断剪切激光线与钢板边界轮廓的相对位置,手动

控制磁力对中装置移动钢板使其与剪刀刀口对齐,实现

钢板的对中任务。 整个过程过度的依赖人工,工作强度

较大,且判断出的边部余量数据带有主观性,没有实际测

量数据作为参考,大大降低了剪切的效率和精准度。
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随着国家智能制造 2025 的目标推进,诸多智能化的

装备被开发并应用到钢铁企业的测控领域[3-4] 。 双边剪

钢板对中的目标在于钢板边界轮廓精细化的定位。 当前

基于视觉检测的定位及几何测量技术已有了重大进

展[5] ,边界轮廓的测量多利用二值化、纹理特征、形态学

变换和边缘检测等方式实现[6] 。 在轻工业场景下利用背

光成像[7] 能够提升边缘分割的难度,田原嫄等[8] 在零件

尺寸测量方面通过对图像的超分辨率重建并利用亚像素

技术增加边缘轮廓的检测精度。 刘建伟等[9] 提出了采用

双目视觉结构,利用点云配准、三维重建等方法测量零件

尺寸,获得较高的测量准确度。 王晓杰等[10] 在低照度情

况下利用直方图均衡化算法增强图像的对比度,通过

Zernike 矩边缘检测算法提高了边缘提取能力。
现阶段针对几何测量的研究主要集中于轻工业场景

下的零件尺寸测量,对于钢铁生产流程中的复杂环境场

景及超大尺寸的轮廓测量还未有过多的研究。 然而,得
益于深度学习技术在语义分割领域的突破性进展,对目

标对象的前景分割及轮廓提取方面给出了基础性的技术

支撑。 由 Yu 等[11-12] 学者提出的 BiSeNet 网络模型利用

语义和细节的双分支网络结构,在实时分割场景下取得

了突破性进展,以远超 Unet[13] 、FCN[14] 、ICNet[15] 等网络

的性能在 Cityscapes 数据集上取得超过 78% 的 mIoU
(mean

 

intersection
 

over
 

union)指标,具备实时性的同时拥

有较高的准确率指标,其多分支的结构被沿用到后续许

多模型[16] 中。 近几年,抠图技术研究也取得突破性进

展[17] ,该方向虽源自语义分割,但更加注重边缘细节部

分的精确提取,能够提升目标轮廓的分辨精度。 Shen
等[18] 利用模板对齐方式自动生成三分图,将抠图网络与

三分图生成网络连接实现误差反向传播,完成面向自然

图像抠图任务的端到端网络训练。 Xu 等[19] 提出一种两

阶段的网络,包括编解码阶段和细化阶段,以原始图像和

相应的三分图作为输入便可预测 Alpha 图。 Ke 等[20] 提

出的 MODNet 相比其他网络,无需额外的三分图输入,采
用目标一致性的自监督策略实现了边缘的精细化处理。

伴随国内工业智能化的发展趋势,亟需对双边剪工

艺流程进行智能化升级改造,提升剪切效率。 本文中针

对双边剪切自动对中系统进行探索,利用视觉测量技术

结合自动控制,实现手眼协动的新一代智能装备系统。
主要有如下几方面工作:

1)设计了基于机器视觉的双边剪自动对中系统,采
用多组相机布局辊道平面,标定虚拟剪切线位置,结合钢

板轮廓定位,控制磁力对中装置实现自动对中控制。
2)设计了级联的钢板前景提取网络模型,相较于单

一的语义分割结构,能够更加准确地检测边缘轮廓,为自

动对中所需移动的距离提供数据基础。
3)系统在实际应用中可达到小于 5 mm 的测量误

差,以及小于 10 mm 的控制误差,实现了双边剪切工艺中

的钢板自动对中,提升了对中效率。

1　 系统设计

1. 1　 工艺流程与硬件设计

　 　 双边剪区域主要由剪刀、磁头、运行辊道等组成,如
图 1(a)所示,其中剪刀分为固定侧和移动侧,固定侧刀

头在距辊道的固定位置不动,移动侧刀头则依据待剪切

钢板的目标宽度进行移动定位。 钢板进入剪切工艺段

后,通过比对两刀头上方平行发射出的激光线与钢板边

界轮廓的相对位置来确定钢板是否对中,如未对中,则控

制辊道下方的磁力装置抬起、上磁吸附、横向移动钢板从

而达到对中的目的。
自动对中系统设计在每个磁力对中装置上方搭建龙

门架结构,龙门架上安装一组 2
 

000 万像素的面阵相机

(本文以单相机为例,在具体应用中可根据检测精度需求

增加每组所包含的相机数量,辊道横向布置更多的相机

能够同步缩小宽度测量的误差,各相机根据标定参数独

立计算相关数据,无需进行图像的横向拼接处理)采集辊

道钢板图像。 如图 1(b)所示,数据经过运算处理服务器

中的语义分割网络模型识别定位到钢板边界轮廓位置,
并依据事先标定出的虚拟剪切线计算出钢板的偏移量,
发送到 L1 控制磁力对中装置按偏移量调整钢板的位置,
实现钢板在线对中调整。

 

对中完成后的测量数据发送至终端显示,异常或对

中后不满足剪切要求的情况将会报警提示。
1. 2　 参数标定

　 　 1)相机畸变矫正

开阔场景下选择的镜头焦距相对较小,会存在明显

的径向畸变,此类畸变主要由镜头径向曲率产生,导致真

实成像点向内或向外偏离理想成像点,对于测量的几何

精度产生影响。 为此本文采用张正友标定法校正镜头畸

变,如图 2 所示,以不同位置、不同角度、不同姿态采集棋

盘格图像,提取棋盘格角点并通过数据拟合计算得到相

机内参,利用内参中包含的畸变系数进行图像重映射可

消除畸变。
2)现场参数标定

标定过程中选择的标定基准面为辊道护板平面,相
机镜头分辨率为 f,在辊道宽度方向上相机的靶面尺寸为

u,标定的参数信息包括:
标定基准平面上的像素分辨率 γ 如式(1)所示:

γ = D
m

(1)

如图 3 所示,以护板上距离辊道两侧最近的两个孔

作为标定孔,利用米尺实际测量两个定位孔之间的距离
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图 1　 钢板自动对中系统

Fig. 1　 Automatic
 

steel
 

plate
 

alignment
 

system

图 2　 棋盘格标定图像

Fig. 2　 Checker
 

calibration
 

image

D,并统计出辊道宽度方向两定位孔之间的像素个数 m。
相机的安装高度 h 如式(2)所示:

图 3　 实际现场数据标定

Fig. 3　 Calibration
 

of
 

actual
 

on-site
 

data

h = f ×
wguard

u
(2)

其中, wguard 为护板平面下相机在辊道宽度方向上能

够照射到的实际范围可由式(3)计算得到。
wguard = γ × n (3)
其中,n 为采集图像中辊道宽度方向上总的像素

个数。
3)虚拟剪切线

如图 4(a)所示,定义钢板平面为测量平面,测量平

面上的相机分辨率 γsteel 由式(4)得到:

γsteel =
(h - h low - t) × u

f × n
(4)

其中, h low 为辊道水平面与护板水平面的高度差,
t 为钢板的实际厚度。

固定刀侧的剪刀位置在距辊道前进方向右边沿指定

距离位置,如图 4(b)所示,当存在钢板时,由于厚度的影

响,在相机成像时剪切线在图像中标记的像素位置会向

侧方偏移,具体的偏移量计算如式(5)所示:

doffset =
d l(h low + t)
h - h low - t

(5)

其中, d l 为相机中心距离固定剪切线的水平距离,
h low 为辊道水平面与护板水平面的高度差,t 为钢板的实

际厚度,h 为相机距离护板水平面的垂直高度。
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图 4　 数据测量示意图

Fig. 4　 Schematic
 

diagram
 

of
 

data
 

measurement

虚拟固定侧剪切线的像素坐标位置由式(6)得到:

Ix_base =
d - doffset

γ
(6)

其中,d 为实际中固定剪刀到辊道前进方向右边沿

的距离, doffset 为剪切线在投影上的偏移值, γ为基准平面

下的相机分辨率。
虚拟移动侧剪切线的像素坐标位置由式(7)得到:

Ix_move = Ix_base +
w target

γsteel
(7)

其中, w target 为待剪切钢板的目标宽度, γsteel 为钢板

平面上的相机分辨率。

1. 3　 边界轮廓提取模型

　 　 钢板边界轮廓提取模型采用级联的语义分割模型,
如图 5 所示,其中第 1 阶段模型输入为相机采集到的原

始图像,输出为粗略的钢板边界轮廓;第 2 阶段模型的输

入则是以第 1 阶段模型输出的钢板左右轮廓线为中心,
按指定的图像尺寸沿轮廓线方向在原始图像上遍历裁剪

得到的 ROI(region
 

of
 

interest)区域的组合,模型输出结果

按裁剪的位置对应的覆盖一阶段模型的输出图,得到最

终钢板轮廓提取结果。
第 1 阶段语义分割模型采用 BiSeNet 网络,利用 2 分

支的结构,其中细节分支采用较宽的通道和较浅的特征

层,用于捕捉底层特征细节;语义分支采用较窄的通道和

较深的特征层,用于获取高级的语义特征;通过一个引导

聚合层 ( aggregation
 

layer) 增强并融合两分支的信息

要素。
边缘提取模块以一阶段语义分割模型输出对象的轮

廓边缘线为基础,采用遍历的方式沿轮廓线截取 512 ×
512 尺寸的图像,图像中包含有钢板的边界信息,相邻图

像之间设定有 32
 

pixels 的重合。

图 5　 边界轮廓提取模型

Fig. 5　 Boundary
 

contour
 

extraction
 

model

第 2 阶段语义分割模型采用 MODNet 网络,该模型

是不需要 Trimap 标识的实时抠图算法,包含了 S 分支

(semantic
 

estimation)、D 分支( detail
 

prediction)、F 分支

(semantic-detail
 

fusion),S 分支用于进行前景的定位,D
分支进行高分辨率特征的提取,F 分支结合 S 分支和 D
分支的输出实现前景抠图。 模型中采用的融合多尺度特

征图 e-ASPP(efficient
 

atrous
 

spatial
 

pyramid
 

pooling)
 

利用

可分离卷积替换传统的孔洞卷积方式提升效率,并交换

通道融合和多尺度特征图融合的顺序提升语义分割

效果。
1. 4　 磁头移动控制

　 　 通过边界轮廓提取模型识别到钢板轮廓后,进行磁

头位置初始化,其中 i 号磁头沿辊道宽度方向的初始化

位置坐标如式(8)所示:

P i
x_mag = (

Iix_left[ I
i
y_mag ] + Iix_right [ I

i
y_mag ]

2
+

( Iix_right [ I
i
y_mag ] - Ix_base )) × γsteel

(8)

其中,定义 i 号磁头的中心在图像中的沿辊道方向

的像素位置坐标为 Iiy_mag ,I
i
x_right [ I

i
y_mag ] 为 Iiy_mag 位置处钢板

右轮廓线在图像宽度方向的坐标, Iix_left[ I
i
y_mag ] 为 Iiy_mag 位

置处钢板左轮廓线在图像宽度方向的坐标。
接下来进行钢板位置的粗调,以固定剪刀侧设置最

小剪切量进行 i 号磁头位置的移动,移动量由式 ( 9)
得到:
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d i
move1 = ( Iix_right [ I

i
y_mag ] - Ix_base ) ×

γsteel + wmin_offset (9)
其中, wmin_offset 为现场设定的剪切容许的最小余量。
最后进行钢板位置的精调,位置精调时以左右侧边

部余量均衡为主进行 i 号磁头位置的移动,移动量由式

(10)得到:

d i
move2 = 1

2
( Ix_move - Iix_left [ I

i
y_mag ]) -

Iix_right [ I
i
y_mag ] - Ix_base )∗γsteel (10)

2　 试验与应用分析

2. 1　 现场数据标定结果

　 　 通过相机标定得到的内参矩阵如式(11)所示:

A =
f / dx 0 cx

0 f / dy cy
0 0 1

é

ë

ê
ê
êê

ù

û

ú
ú
úú

=

3
 

599. 6 0 2
 

600. 1
0 3

 

601. 9 1
 

824. 6
0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(11)

其中,f 为镜头分辨率,dx、dy 为像素的物理尺寸,图
像原点相对于光心成像点的纵横偏移量 cx 和 cy。

径向畸变是指图像像素以畸变中心为原点,沿着径

向产生位置偏差,从而导致图像形变;切向畸变是由于在

安装时产生安装偏差,使镜头不完全平行于镜头平面而

造成的畸变。
畸变系数标定结果如式(12)所示:

Dist =

k1

k2

p1

p2

k3

ì
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ï
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ï
ï
ï

ü
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0. 000

 

160
 

14
- 0. 000

 

113
 

38
- 0. 003

 

636
 

92
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ï
ï

ï
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ü
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ï
ï
ï

ï
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(12)

其中,径向畸变系数为 k1、k2、k3, 切向畸变系数为

p1、p2。
标定相机分辨率的具体数据如表 1 所示,其中起始

位置为图 3( b) 中上方标定孔下边沿在图像中辊道宽

度方向的像素位置,结束位置为图 3( b) 中下方标定孔

上边沿在图像中辊道宽度方向上的像素位置。 实际距

离是在实际现场条件下利用米尺测量得到,测量误差

为 1 mm。
利用相机分辨率结合图像像素个数计算得到相机沿

辊道宽度方向的实际照射宽度,相机靶面尺寸和焦距由

所选相机决定,通过以上参数利用相似三角形原理得到

相机安装高度,具体信息如表 2 所示。

表 1　 相机分辨率标定数据

Table
 

1　 Calibration
 

data
 

for
 

camera
 

resolution
参数类型 相机 1 相机 2 相机 3 相机 4

起始位置 / pixel 570 560 439 563
结束位置 / pixel 2

 

450 2
 

460 2
 

354 2
 

422
像素距离 / pixel 1

 

880 1
 

900 1
 

915 1
 

859
实际距离 / mm 2

 

818. 5 2
 

818. 5 2
 

821 2
 

821
相机分辨率 1. 499

 

202 1. 483
 

421 1. 473
 

107 1. 517
 

482

表 2　 相机安装高度标定数据

Table
 

2　 Calibration
 

data
 

for
 

camera
 

installation
 

height
参数类型 相机 1 相机 2 相机 3 相机 4
镜头焦距 8 8 8 8
靶面尺寸 8. 755 8. 755 8. 755 8. 755
横向像素 5

 

472 5
 

472 5
 

472 5
 

472
纵向像素 3

 

648 3
 

648 3
 

648 3
 

648
相机分辨率 1. 499

 

202 1. 483
 

421 1. 473
 

107 1. 517
 

482
照射宽度 5

 

469. 0 5
 

411. 5 5
 

373. 8 5
 

535. 7
安装高度 4

 

997. 4 4
 

944. 8 4
 

910. 4 5
 

058. 3

　 　 计算钢板宽度时需要充分考虑其自身厚度对相机分

辨率的影响,根据式(13)可计算出单位厚度变化 Δt 对相

机分辨率的影响 Δγ。

Δγ = Δt × u
f × n

(13)

以本文中所使用的相机为例,当被测钢板厚度变化

1 mm 时,相应产生的相机分辨率变化为 0. 000 299,在钢

板宽度方向上占用 3
 

000
 

pixels 时,带来的宽度测量偏差

达到 0. 89 mm。 因此本文在计算钢板宽度时所使用的

式(4)中充分考虑了钢板厚度对于像素分辨率的影响并

加以补偿。
2. 2　 轮廓检测结果分析

　 　 1)数据集构建

本文所用的数据集来源于企业现场采集得到,图像

经过畸变矫正和透视变换后得到尺寸为 5
 

400×3
 

600 的

原始图像作为一阶段数 据 集 共 计 1
 

267 张。 通 过

Labelme 工具进行钢板对象标注,其中前景钢板的类别为

1,其余背景区域类别为 0,如图 6(a)所示。
以一阶段样本标注的钢板边界为基准上下对称的沿

边界线从原始图像和对应标签图像中同步位置截取出尺

寸为 512×512 的子图作为二阶段数据集共计 18
 

534 张,
二阶段数据集能够更加清晰的观察边界细节,如图 6( b)
所示。

2)评价指标

常规的语义分割度量方法多采用 mIoU 指标进行衡

量,所有前景像素点均会参与到计算过程中,该指标更加

关注整体形态上的分割效果,降低了对于钢板轮廓边界

处分割效果的关注,而边界轮廓恰恰是影响双边余量计
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图 6　 边界轮廓数据集

Fig. 6　 Datasets
 

of
 

boundary
 

contour

算的关键特征。
为此本文中重新针对钢板轮廓边界处设计了局部

mIoU 指标(p-mIoU),用于在实验过程中进行更加全面的

比对分析,p-mIoU 指标计算如式(14)所示。
p - mIoU =

Dilate(Laplacian(y)) ∩ Dilate(Laplacian(y′))
Dilate(Laplacian(y)) ∪ Dilate(Laplacian(y′))

(14)

其中, y 为样本标签数据, y′ 为模型输出数据,
Laplacian(∗)表示进行拉普拉斯变换,Dilate(∗)表示图

像的形态学膨胀操作,本文中膨胀率设置为 7。
3)试验对比分析

本文训练用到的 GPU 为 NVIDIA
 

GeForce
 

RTX
 

3080
 

Ti, 语 言 环 境 为 Python
 

3. 8, 深 度 学 习 环 境 为

Pytorch1. 9. 1。
利用一阶段数据集分别训练 BiseNetV2 和 MODNet

模型,先以尺寸 5
 

400×3
 

600 的原始图像训练模型,如表

3 所示,模型推理时间相对较长,而且训练样本尺寸较大

时对于显存的需求相对较高,训练难度较大,不适合实际

的生产应用。 因此表 3 中还测试了将输入图像尺寸调整

为 1
 

024×1
 

024 后的模型效果,经过指标结果对比分析可

得,降低输入图像尺寸后,虽然在推理时间上有较大提

升,但也不可避免的降低了模型的识别准确度;同时可以

发现模型在 mIoU 指标相近的情况下,利用本文提出的 p-
mIoU 能够更加有效的判定模型对于钢板边界提取的准

确性,方便进行模型的评估和选择。

表 3　 一阶数据集下模型测试指标

Table
 

3　 Test
 

indicators
 

of
 

different
 

models
 

under
 

first-order
 

datasets
模型 数据集 原始图像尺寸 模型输入尺寸 时间 / ms mIoU / % p-mIoU / %

BiSeNet 一阶 5
 

400×3
 

600 5
 

400×3
 

600 432 94. 14 86. 41
MODNet 一阶 5

 

400×3
 

600 5
 

400×3
 

600 549 94. 02 91. 22
BiSeNet 一阶 5

 

400×3
 

600 1
 

024×1
 

024 16 93. 67 88. 54
MODNet 一阶 5

 

400×3
 

600 1
 

024×1
 

024 22 92. 56 91. 34

　 　 二阶数据集中充分保留边界细节信息,利用此数据

集训练后的 BiseNetV2 和 MODNet 模型在处理时间和检

测指标上均能保持相对均衡。 如表 4 所示,从具体指标

上也可发现 MODNet 模型相较于 BiseNetV2 模型在 p-
mIoU 指标上更具有优势,更加适合作为级联模型中的第

2 阶段模型,而 BiseNetV2 具备更快的速度,在粗略提取

钢板轮廓时节省时间消耗,适合作为第 1 阶段模型。
表 4　 二阶数据集下模型测试指标

Table
 

4　 Test
 

indicators
 

of
 

different
 

models
under

 

second-order
 

datasets

模型 数据集
原始图像

尺寸

模型输入

尺寸

时间 /
ms

mIoU /
%

p-mIoU /
%

BiSeNet 二阶 512×512 512×512 9 93. 67 88. 54
MODNet 二阶 512×512 512×512 11 95. 56 94. 34

　 　 本文所设计的级联网络模型先将尺寸为 5
 

400 ×

3
 

600 的原始图像调整尺寸到 1
 

024 × 1
 

024 后输入到

BiSeNetV2 模型中得到粗略的边界,然后通过边缘提取模

型截出约 22 张尺寸为 512 × 512 的子图输入到 MODNet
模型中,得到精细的边界贴补到一阶段模型输出结果上,
得到最终的钢板分割图。 如表 5 所示,从检测指标中可

以看出在处理时间上相较于直接进行原图预测节省了

50%以上的运算时间,同时在 p-mIoU 指标上相较单独使

用一个模型时提升了 4%。

表 5　 级联模型测试指标

Table
 

5　 Test
 

indicators
 

cascade
 

model

模型
数据

集

原始图像

尺寸

模型输入

尺寸

时间 /
ms

mIoU /
%

p-mIoU /
%

本文
一阶 5

 

400×3
 

600 1
 

024×1
 

024 16 93. 67 88. 54
二阶 512×512 512×512×22 240 96. 42 95. 28

　 　 如图 7(a)所示为原始图像(尺寸为 5
 

400×3
 

600)输
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入到 MODNet 模型得到的输出结果图像,如图 7(b)所示

为原始图像输经过级联模型处理得到的输出结果图像,
从两模型输出的钢板边界的分割效果可以看出,级联模

型具备更好的轮廓提取效果,得到的边界更加平滑,具备

较强的鲁棒性。

图 7　 不同模型检测效果对比

Fig. 7　 Comparison
 

of
 

different
 

model
 

detection
 

effects

采用基于深度学习的级联模型,能够充分学习复杂

　 　 　 　 　

场景下的钢板轮廓特征,对于不同钢种所形成的背景差

异有良好的适应性,同时在应对光线干扰时具备更佳的

鲁棒能力。 这些是基于灰度、梯度等单一特征边界提取

方法所不具备的,可以有效降低系统对于相机成像的

要求。
由于钢板具备一定厚度,在进行光学成像时其边缘

灰度无明显的梯度跳变,而是存在一定的渐变特性。 因

此在宽度测量时需考虑如下处理过程:(1)在成像时设

计相机位于钢板上方,向两侧进行钢板边缘的捕捉,可以

避免由于钢板下边缘出现在图像中对轮廓提取产生的影

响;(2)在进行级联语义分割模型样本标注时,以钢板上

边缘位置作为其提取轮廓线,形成测量位置标准的统一,
模型在预测推理时将以此位置作为目标进行输出。
2. 3　 系统应用分析

　 　 为了验证系统的实际性能指标,本系统在国内某钢

铁企业进行实际应用,并进行数据统计与分析。
1)钢板轮廓测量误差分析

在钢板宽度方向上的边界轮廓测量准确度,是钢板

对中成败与否的关键,通过利用米尺在实际钢板上测量

得到宽度与对中系统测量宽度进行比较,可以计算出系

统宽度测量误差,表 6 中展示了部分钢板的测量数据比

对结果。
表 6　 部分钢板测量数据

Table
 

6　 Measurement
 

data
 

of
 

some
 

steel
 

plates (mm)

设定宽度
现场实际测量值 对中系统测量值

钢板宽度 左侧余量 右侧余量 钢板宽度 左侧余量 右侧余量
宽度误差

左侧余量

误差

右侧余量

误差

3
 

610 3
 

717 54 53 3
 

716. 2 52. 1 54. 1 -0. 8 -1. 9 1. 1
3

 

530 3
 

635 46 52 3
 

630. 5 49. 7 50. 8 -4. 5 3. 7 -1. 2
2

 

979 3
 

098 59 55 3
 

095. 1 59. 8 56. 3 -2. 9 -2. 5 1. 3
2

 

610 2
 

705 43 46 2
 

703. 3 45. 5 47. 8 -1. 7 2. 5 1. 8
2

 

520 2
 

595 31 37 2
 

591. 8 33. 4 38. 4 -3. 2 2. 4 1. 4
2

 

010 2
 

100 47 46 2
 

098. 6 44. 5 44. 1 -1. 4 -2. 5 -1. 9

　 　 表 6 中“设定宽度”为钢板剪切后的目标宽度,生产

现场中由于考虑剪刀的移动误差,为了保证剪切后的宽

度满足客户需求,设定宽度数值是在实际目标宽度基础

上增加 10 mm 得到的。 现场实际测量值中钢板宽度是在

相机正下方位置测得,左侧余量和右侧余量为实际剪切

后的废料中测量得到;对中系统测量值是通过标定参数

和边界轮廓识别模型输出结果共同计算得到,其中的左

侧余量和右侧余量为钢板边界轮廓到虚拟剪切线的距

离值。
综合表中统计数据,钢板宽度测量误差小于 5 mm,

可以满足实际生产需求。 进一步分析认为导致宽度测量

误差的主要来源是钢板边缘的倒角形态,该形态会导致

在成像中边部过渡带较长,为样本标记及模型检测增加

了难度,这种情况可以通过合理的成像以及进一步优化

检测模型来解决。 左右两侧的余量误差一方面来自于数

据的测量及标定误差,另一方面也会受到实际生产过程

中钢板由测量点到剪切点处的运动偏离误差以及剪刀移

动误差的影响,可以作为下一步的研究重点。
2)系统对中控制误差分析

对中过程中考虑到钢板抬起后钢板高度的变化对成

像的影响,在控制磁力对中装置抬起吸住钢板后先从图

像中固定侧虚拟剪切线附近截取 ROI 区域,计算得到钢

板边界坐标位置作为初始参考值,在钢板移动过程中实

时采集图像,根据此 ROI 区域中钢板边界坐标位置的变

化确定钢板实际移动量是否达到所需要的移动量,达到

后控制磁力对中装置停止并下降,同时再次测量钢板双

边余量值,如未满足剪切要求,则报警提醒并进行人工

验证。
控制钢板移动的过程会受设备老化、运动惯性、升降

震动等多方面的影响,会使得控制精度出现较大误差,需
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要进行分析并加以补偿。
如图 8(a)所示,统计发现运动惯性的影响与钢板厚

度具备相关性,厚度越大,控制停止所需的时间越长,造
成的位置偏差也越大,因此在实际控制过程中根据厚度

进行移动量补偿,提前控制钢板停止。

图 8　 控制误差分析

Fig. 8　 Analysis
 

of
 

control
 

errors

起落震动的影响主要是分析磁力对中装置在升降时

带来钢板横向移动所造成的位置偏差,如图 8( b)所示,
该因素在控制过程中产生的误差较为随机,且误差不可

控,无法进行监测和补偿,这也是控制精度损失的重要原

因,后续研究可以再进一步分析磁力对中装置于钢板相

对位置的影响,找出相关因素,降低此类误差。
综合实际数据分析可知,系统的控制误差可保证在

小于 10 mm 的范围,在控制误差较大时可以依据检测验

证手段进行报警提醒,满足可靠稳定的要求。
3)系统对中效率分析

钢板对中的过程包括如下阶段:(1) 进行钢板的位

置检测,得到钢板需要移动的偏移量;(2) 控制磁头(磁

力对中装置)上升、磁头启动、钢板移动、磁头下降几个步

骤;(3)再次验证钢板两侧余量信息是否满足剪切要求。
如表 7 所示,其中磁头上升、磁头启动、磁头下降 3

个过程受限于硬件设备,所需时间无法进行优化,初始位

置检测过程可以和磁头上升过程同步在两个线程中同时

进行,最终得到系统对中时间范围在 17
 

~
 

24 s,人工对中

时间一般在 20 ~ 28 s,本系统在对中效率上相较人工每块

钢板可提升 3 s 左右。
表 7　 系统对中所用时间统计

Table
 

7　 Time
 

statistics
 

of
 

system
 

alignment

阶段
初始位置

检测

磁头

上升

磁头

启动
钢板移动 磁头下降

验证位置

检测

时间 / s 3 ~ 4 3 2 6 ~ 12 3 3 ~ 4

3　 结　 论

　 　 本研究中开发的双边剪钢板自动对中系统通过相机

采集辊道钢板轮廓状态,使用级联边界轮廓提取模型由

粗到细的实现边界分割,并结合位置标定数据判断双边

余量,并以此控制磁力对中装置调整钢板位置,达到自动

对中的目的,摒弃了人工目视激光线进行对中判定的传

统方式,不仅降低了人工成本,提升了生产效率,而且不

必使用激光线进行辅助,降低了设备维护成本。 通过在

具体应用中对影响控制误差的因素进行分析,梳理了影

响控制误差的多种因素,包括运动惯性、起落震动等影

响,经分析运动惯性的规律可依赖厚度情况进行一定的

补偿,而起落震动过程数据较为随机,此因素的影响还需

进一步探究,以提升自动对中过程的精确控制。
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