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摘　 要:针对人体关键点检测存在检测精确度低的不足,在 KAPAO( keypoints
 

and
 

pose
 

as
 

objects)网络的基础上进行改进。 使

用 PoseTrans(pose
 

transformation)进行数据增强,提高网络的泛化性;针对特征融合能力的不足,设计融合注意力机制的 BiFPN
(Bi-directional

 

feature
 

network)模块充分融合不同语义特征,提高网络对深层语义信息和浅层语义信息的融合能力;在网络输出

阶段设计自适应扩张卷积模块,将不同扩张率的输出分支进行自适应融合,有效获得图像的全局信息;在网络的后处理部分设

计 SDR-NMS(soft
 

DIOU
 

relocation
 

non-maximum
 

suppression)替代传统的 NMS,保留最优的关键点预测框。 实验结果表明,网络

的 AP 分数提高了 4. 8%,AP 为 68. 6%,检测速度为 19. 1
 

ms。 网络精确度和检测速度均具有较好的表现性。
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Abstract:
 

For
 

the
 

lack
 

of
 

detection
 

accuracy
 

for
 

human
 

keypoints,
 

it
 

is
 

improved
 

on
 

the
 

basis
 

network
 

of
 

KAPAO
 

(keypoints
 

and
 

pose
 

as
 

objects) .
 

The
 

generalization
 

of
 

network
 

is
 

improved
 

by
 

the
 

enhance
 

data
 

method
 

of
 

PoseTrans
 

( pose
 

transformation);
 

for
 

the
 

lack
 

of
 

characteristic
 

fusion
 

capabilities,
 

the
 

BiFPN
 

( Bi-directional
 

feature
 

network)
 

module
 

is
 

designed
 

to
 

fully
 

integrate
 

different
 

semantic
 

characteristic
 

to
 

improve
 

the
 

integration
 

ability
 

of
 

deep
 

semantics
 

information
 

and
 

shallow
 

semantic
 

information;
 

the
 

adaptive
 

expansion
 

convolution
 

module
 

is
 

designed
 

to
 

adaptive
 

fusion
 

different
 

expansion
 

rates
 

of
 

output
 

branch
 

during
 

the
 

network
 

output
 

phase,
 

it
 

effectively
 

obtains
 

the
 

global
 

information
 

of
 

the
 

image;
 

in
 

order
 

to
 

retain
 

the
 

optimal
 

key
 

point
 

prediction
 

box,
 

the
 

traditional
 

NMS
 

is
 

replaced
 

by
 

SDR-NMS
 

( soft
 

DIOU
 

relocation
 

non-maximum
 

suppression )
 

during
 

the
 

post-processing
 

part
 

of
 

the
 

network.
 

The
 

experimental
 

results
 

show
 

that
 

the
 

AP
 

score
 

was
 

increased
 

by
 

4. 8%,
 

the
 

AP
 

was
 

68. 6%,
 

and
 

the
 

detection
 

speed
 

was
 

19. 1
 

ms.
 

The
 

accuracy
 

and
 

detection
 

speed
 

of
 

network
 

have
 

better
 

performance.
Keywords:keypoints

 

detection;
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feature
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data
 

augmentation

0　 引　 言

　 　 人体关键点检测是计算机视觉重点研究领域之一,
其目的是从输入的图像中检测出鼻子、手腕、臀部、脚踝

等人体关键点,获得各个人体关键点的位置坐标,从而有

助于行为识别[1-2] 、人机交互、体育运动分析等下游任务

的实现。
随着深度学习的发展,研究人员将深度学习与人体

关键点检测技术结合取得了相应的进展,但是同时存在

推理速度慢、在具有挑战性的场景下,如罕见姿态以及多

尺度输入时,检测精度低等问题。 现阶段基于深度学习



·178　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 37 卷

的人体关键点检测可分为基于热图和基于关键点坐标回

归两类方法。 其中较为常用的方法是基于热图的方法。
Cao 等[3] 提出使用部分亲和场将身体部位与图像中个体

相关联,通过全局遍历解析热图和亲和场的对应关系,得
到所有人体关键点。 但是算法在多人场景下会出现关键

点与人体部位匹配错误的问题。 Chen 等[4] 针对遮挡的

关键点提出一种级联金字塔的新型网络结构, 使用

GlobalNet ( global
 

network ) 检 测 简 单 关 键 点, 再 通 过

RefineNet(refined
 

network) 进一步细粒度检测图像中的

关键点信息。 Wang 等[5] 提出一种高分辨率的网络称为

HRNet(hight-resolution
 

network),在整个网络过程中保持

高分表率表示,并将高分辨率与低分辨率的卷积通道进

行并行连接,得到表示更精确的空间特征图。 由于网络

始终保持高分辨率,所以模型参数量和复杂度较大。 为

此,后续提出一系列基于 HRNet 的改进以解决模型参数

量大的问题。 Yu 等[6] 提出 Lite-HRNet 网络,将 shuffle
模块[7] 融入 HRNet,并使用信道加权取代高昂的逐点

卷积。 钟宝荣等[8] 提出在 HRNet 网络中融入 Ghost 模
块[9] ,Sandglass 模块以及注意力机制的轻量关键点检

测网络。 马皖宜等[10] 提出融入多谱注意力机制的 Lite-
HRNet,在网络后接入深度可分离的反卷积提升网络检

测速度。
以上基于热图的方法存在量化误差,当两个相同关

键点相邻较近时,可能会被误认为是一个关键点。 同时,
关键点检测精确度受到热图分辨率的限制,导致检测速

度较低。 因此,研究人员开始研究基于关键点坐标直接

回归的方法,摒弃热图以提高检测速度。 Toshev 等[11] 提

出基于关键点坐标回归的检测方法,将深度学习引入关

键点检测替代基于模板匹配的方法。 Zhou 等[12] 将关键

点对象作为检测边界框的中心点,使用 CenterNet 检测器

进行关键点定位。 Li 等[13] 提出一种带有残差对数似然

估计的新回归范式来捕捉潜在的输出分布,摒弃热图并

与现有的关键点检测网络耦合,达到了一定速度的提升。
Nie 等[14] 提出一种 SPM ( single-stage

 

multi-person
 

pose
 

machine)网络,将关键点编码为相对于根关节的位移。
通过网络同时预测根关节和关键点位移。 但当出现人物

严重遮挡时,其表现较弱。 Li 等[15] 为了解决基于回归的

方法准确率较低的问题提出一种级联的 Transformer 关键

点检测网络,多层的自注意力用于捕捉各个关键点之间

的空间关系。
综上所诉,基于热图的方法虽然精度较高,但是其后

处理需要大量时间,推理速度缓慢;基于关键点回归的方

法摒弃热图回归以提高推理速度,但其检测精度较低,为
此,针对基于关键点回归的检测网络精确度较低的问题,
本文基于 KAPAO-S[16] 网络做出改进,使用 PoseTrans[17]

数据增强方法提高网络的泛化性,设计融入注意力融合

机制的 BiFPN 模块,在特征融合部分融入设计的空间注

意力机制,提高特征融合能力,并针对多尺度目标,融合

不同扩张率的扩张卷积提高对多尺度目标的检测能力;
最后使用改进的 NMS 算法( SDR-NMS)提高关键点的定

位精确度。

1　 相关工作

　 　 KAPAO 模型是一种多任务损失模型,通过模型同时

检测一组关键点对象和一组人体姿态对象。 首先将关键

点检测转化为基于锚框的目标检测。 关键点坐标为正方

形边界框的中心,使用归一化的方法设置边界框大小。
同时对各类关键点坐标和人体边界框进行空间建模,对
各类关键点坐标值和人体边界框进行回归,进而估计出

人体姿态对象。 关键点对象用于检测局部特征较强的单

个关键点,比如眼睛耳朵等。 关键点检测的最终输出为

关键点检测框,进而转化为关键点坐标值和其置信度。
人体姿态检测用于检测人体姿态,最终输出为人物检测

框和估计出的 17 个关键点坐标值。 如图 1 所示,人体姿

态对象 Op,包含一个人体对象和 17 个关键点坐标,关键

点置信度为 0。 其输出框的大小为 57,分别包含人体边

界框信息(po,tx,ty,tw,th),1 个人体类别(c1 ),17 个关键

点的类别( c2,…,ck+1 ),其中 k = 17,17 个关键点坐标

(vx1,vy1,…,vxk,vyk)。 关键点对象 Ok,虽然其输出框的

大小为 57,但是仅用关键点边界框信息(po,tx,ty,tw,th)
和 17 个关键点的类别(c2,…,ck+1)作为关键点检测的信

息进行损失计算。 关键点对象作为单独的对象无需与其

余关键点进行建模。 算法使用共享的检测头同时检测这

两种对象。 并使用简单的匹配算法将单个关键点对象匹

配到对应的人体部分,从而避免使用复杂的自底向上的

分组方法。 即当预测的关键点对象坐标值与预测的人体

姿态对象中关键点坐标值相匹配且关键点置信度大于设

定的阈值时,则将其匹配到检测的人体姿态对象中。 算

法以 YOLOv5 的 3 种算法模型为基础,共有 KAPAO-S,
KAPAO-M, KAPAO-L 这 3 种 模 型。 本 文 选 用 以

YOLOv5s 为基础的 KAPAO-S 模型,整体算法结构如图 2
所示,其中 Op 为姿态对象,为 Ok 关键点对象, ϕ 为关键

点与姿态匹配算法,NMS 为非极大值抑制算法。

2　 本文方法

　 　 本文使用 PoseTrans 特征增强方法生成更多罕见的

姿态,以扩充人体姿态的多样性,提高模型对于弱局部特

征关键点检测的泛化性,对于 PANet[18] 在特征提取时产

生冗余的特征图,特征融合不充分的问题,设计一种注意

力机制的 BiFPN[19] ,BiFPN 特征金字塔网络通过跳跃连



　 第 7 期 改进 KAPAO 的人体关键点检测 ·179　　 ·

图 1　 姿态对象和关键点对象示意图

Fig. 1　 Schematic
 

figure
 

of
 

pose
 

and
 

key
 

object

图 2　 算法结构图

Fig. 2　 Algorithm
 

structure
 

diagram

接和特征通道加权有效减少了冗余特征,并在 BiFPN 的

基础上融入本文的注意力融合机制模块,称为 A-BiFPN。
不同的特征图不再是简单的拼接,而是获取不同特征图

的空间权重,增强特征融合能力。 在 Neck 部分后加入自

适应扩张卷积模块,分别对应 Neck 部分的 4 层输出。 其

由 4 个 自 适 应 扩 张 卷 积 模 块 ADC ( adaptive
 

dilatedconvolution)组成,由不同的扩张率的扩张卷积与

原始特征图并联,自适应的获得不同尺寸的感受野,提高

模型对多尺度目标的检测能力。 在后处理部分对于 NMS
算法将相邻的预测框置信度分数强制置零,导致漏检的

问题,提出本文的 SDR-NMS 算法,分别经过置信度抑制

和重定位,获取最优的预测框。 改进后的网络结构如

图 3 所示。
2. 1　 数据增强

　 　 通过对 COCO 关键点数据集进行归一化并聚类为

20 个姿态类别发现,数据集存在长尾分布现象,如图 4
所示,其中,站立,行走等常见的姿态占据了数据集的大

部分,而罕见的蹲下等姿态仅占较小部分。
为此,使用 PoseTrans 数据增强方法对 COCO 数据集

进行扩充。 PoseTrans 数据增强的方法如图 5 所示,以 3

图 3　 改进特征提取网络

Fig. 3　 Improved
 

feature
 

extraction
 

network

类姿态为例:首先将人体拆解为头部,躯干和四肢。 使用
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PTM(pose
 

transformation
 

module)姿势变换模块通过仿射

变换对四肢进行旋转和缩放生成多样的姿势。 再通过姿

势鉴别器 D,去除关节角度扭曲,位置不合理的姿态,形
成候选姿态池。 图5 中P1,P2,P3 分别为对应候选姿态池

中的 3 种姿态的概率。 最后通过 PCM ( pose
 

clustering
 

module)聚类算法,对原始 COCO 数据集聚类得到每类对

应的类别权重 αL,L 表示类别。 预测生成的每一个新的

姿态属于每个类别的概率 PL
n,n 表示生成的总的姿态个

数( n ∈ {1,2,3} ),表示属于某一类别(L∈{A,B,C})。
最后通过选取加权和最小的姿态作为扩充的罕见姿

态,用于对数据集的增强,以 P2 为例,加权求和计算公式

如式(1)所示,并通过式(2)求出概率最小的值为 P2,即
概率为 P2 的姿态为最终的姿态。 如图 5 中姿态池中边

界框所标记的姿态。
P2 = pA

2αA + pB
2 αB + pC

2 αC (1)
t = min(P1,P2,P3) (2)

图 4　 姿态类别频率和平均准确度分布

Fig. 4　 Pose
 

categories
 

frequency
 

and
 

average
 

accuracy
 

distribution

图 5　 PoseTrans 算法结构

Fig. 5　 PoseTrans
 

algorithm
 

structure

2. 2　 注意力融合机制的 BiFPN
　 　 为了对主干网络提取的不同特征层充分的融合,首
先提出 FPN[20] 融合结构,增加一条单向自底向上的路

径,对不同尺度的特征图进行简单的上采样。 PANet 在

FPN 的基础上引入一条自上而下的路径,由于反复的特

征提取,产生了冗余的特征图降低了网络效率。 BiFPN
将只有一个输入边的特征层进行残差连接,对特征融合

结构进行简化,同时为了增强特征融合能力,将处于同一

级的特征层,从原始输入节点增加一条跳跃连接,使得网

络同时融合了深层和浅层的特征。 其具体结构如图 6
(d)所示,由于 BiFPN 等特征融合网络在融合节点是进

行简单的拼接,在融合节点设计注意力融合模块,增强特

征融合的能力。

对不同特征图使用空间注意力机制,得到不同空间

权重的特征图,新的特征映射与原始的特征图相结合。
注意力机制融合部分结构如图 7 所示,以跳跃连接的 3
层特征为例,其中 a,b,c 分别是不同的特征图,分别进行

最大池化和 1×1 卷积,1×1 卷积用于保留全局信息,最大

池化用于获取局部信息,并对两者进行拼接再通过 3×3
卷积,最后通过 Sigmoid 函数,为每个特征图生成相应的

空间权重,生成的权重图和原始特征图进行矩阵运算,最
后融合具有丰富的语义信息。
2. 3　 自适应扩张卷积模块

　 　 Neck 的后部加入不同扩张率的扩张卷积,根据图像

的不同尺度自适应学习各特征图中不同的感受野,从而

提高不同尺度关键点检测的精确度。 如图 8 所示,首先
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图 6　 特征金字塔结构对比

Fig. 6　 Comparison
 

of
 

feature
 

fusion
 

structures

图 7　 注意力融合机制结构

Fig. 7　 Structure
 

of
 

attention
 

fusion
 

mechanism

将不同扩张率的分支与原始特征图分支并联,不同扩张

率分支提供不同大小感受野的特征图,然后利用分支池

化层自适应融合 3 个不同分支的特征图信息,提高多尺

度预测精确度。 3 支路分支由一个常规卷积分支和两个

不同扩张率的扩张卷积的分支组成,每个分支的卷积操

作后为 BN 层和 ReLU
 

激活层。 3 个支路具有相同大小

的 3×3 卷积核,其中扩张卷积的扩张率分别设置为 3,5。

图 8　 自适应扩张卷积

Fig. 8　 Adaptive
 

dilated
 

convolution

分支池化层融合来自不同并行分支的信息,并避免

引入额外的参数。 平均运算用于在训练期间平衡不同并

行分支的表示,表达式如式(3)所示。

yp =
1
Db

∑
Db

i = 1
y i (3)

其中, yp 是分支池化层的输出, Db 是分支数量,即
Db = 3。

2. 4　 SDR-NMS 算法

　 　 在检测任务中,通常使用 NMS 算法,对预测框进行

保留和抑制。 传统的 NMS 算法置信度更新过程如式(4)
所示:

si =
si,iou(M,b i) < N i

0,iou(M,b i) ≥ N i
{ (4)

式中: M 为经过置信度排序选出的最优预测框, b i 为预

测框,当两者的 iou 大于等于阈值 N t 时,将其对应的置信

度 si 置为 0, M 框将 b i 框抑制并舍弃。
在人员拥挤的场景下,关键点对象之间将会存在相

互遮挡的现象,不同关键点对象的预测框重叠度较高,传
统的 NMS 将会发生漏检,定位精确度不准确,从而影响

检测精确度。 于是,本文设计一种 SDR-NMS 算法。 该算

法分为置信度抑制和预测框重定位两阶段。 受 Soft-
NMS[21]启发,利用置信度抑制的方式调整类别的置信度

并重新排序。 选出置信度得分最高的作为最优预测框

M, 并记录 DIOU 小于 N t 的预测框的位置信息,最后利用

位置信息对最优预测框进行重定位。
在置信度抑制阶段,对最优预测框 M 重叠率较高预

测框使用软抑制机制,适当的降低其置信度,得到新的置

信度集合 Z,并根据集合 Z 对预测框集合重新排序得到

新的置信度集合 B, 预测框置信度公式如式(5)所示。

si =
si,D iou(M,b i) < N
si × (1 - D iou(M,b i)),D iou(M,b i) ≥ N{ (5)

式中:使用 D iou 作为预测框的阈值判断准则。
在重定位阶段,首先找到与最优预测框的 DIOU 值

小于阈值的 k 个预测框集合 A(A{a1,a2,…,ak}),然后

计算最优预测框和集合 A 之间的平均偏移值,最后利用

平均偏移值进行重定位操作,获得最终的最优预测框 J 。
重定位计算过程如图 9 所示。

计算最优预测框 M 的 xm 值与集合 A 中 a i 预测框对

应的 xa 值的偏移值 Ox ,并使用 xm 与偏移值相加得到最

终得预测框 J 的 x i 值,以预测框的左上角坐标值 x i 重定

位为例计算公式如下所示,以此类推便可求得经过重定

位计算之后的预测框 J。
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图 9　 重定位计算过程

Fig. 9　 Figure
 

of
 

relocation
 

calculation
 

process

Ox =
∑

k

i = 1
| xm - xai

|

k
(6)

x j = xm + Ox (7)

3　 实验结果与分析

　 　 实验环境配置如下:操作系统为 Unbunt18. 04,深度

学习框架为 Pytorch1. 9,CUDA 版本为 CUDA11. 0,GPU
为 RTX3060(12

 

G) × 4,编程语言为 Python3. 7。 模型训

练过程中,输入数据大小为 640×640,batch-size 设为 96,
epoch 为 1

 

000。 使用 Nesterov 动量的随机梯度下降优化

器,在学习率调整过程中,前 5 个 epoch 使用 warm-up 策

略[22] ,后使用 SGDR 策略[23] 。
3. 1　 数据集介绍

　 　 选用 COCO2017 数据集作为实验数据集进行训练验

证和测试,该数据集 train2017 训练集含有 118
 

287 张人

体姿态图片,val2017 验证集包含 5
 

000 张图片,test-dev
测试集包含 20

 

000 张图片,含有 17 个人体关键点。
3. 2　 边界框生成

　 　 本文使用关键点坐标作为边框的中心值为 17 类关

键点生成边界框。 生成 5 种不同尺寸的边界框 bs ∈
{S × 1%,S × 2. 5%,S × 5%,S × 7. 5%,S × 10%} 经验证

使用 S×2. 5% 以下尺寸的边界框使得模型训练不稳定,
准确性较差;当尺寸大于 S×5%时,准确性会迅速下降。
使用 S × 5% 大小的边界框尺寸,模型性能表现最优,因
此本文选择的边界框大小为 S × 5%。
3. 3　 评价指标

　 　 对于关键点检测任务使用常用的关键点相似度评价

指标,其公式如式(8)所示。

OKS =
∑

i
exp -

d2
i

2s2k2
i

( ) δ(vi > 0)

∑
i
δ(vi > 0)

(8)

其中, d i 表示关键点预测值与真实值的欧氏距离,
s 表示目标尺寸,k i 表示为一个用于控制每类关键点衰减

的常数, vi 表示关键点的可见性标志。 采用平均精确度

AP 和召回率 AR 作为检测的评价指标。 当 OKS 值不同

时,得到不同的 AP
 

和 AR,OKS 可取 {0. 50,0. 55, …,
0. 95} 。 如当 OKS = 0. 5 时,则 AP 0. 5。
3. 4　 推理速度对比实验

　 　 为了验证本文基于关键点回归的推理速度的有效

性。 在 COCO
 

val2017 验证集上进行对比实验,实验在同

一设备进行( RTX2060)。 由表 1 可以看出,本文的推理

时间明显快于 DEKR ( disentangled
 

keypoint
 

regression)-
W32[24] ,

 

HRNet-W48,
 

HigherH
 

RNet-W32[25] 等方法。 以

上 3 种方法均是以 HRNet 为基础网络,其在网络推理过

程中,特征图保持了较高的分辨率,导致网络的推理速度

较低。 本文的推理速度虽相比于 KAPAO-S 慢了 1. 6 ms,
分析是因为本文采用的 SDR-NMS 算法进行了两次遍历,
使得本文的后处理时间相较于 KAPAO-S 慢了 1. 1 ms,且
在网络的输出部分由于加入了并行分支使得网络参数量

增加,导致推理速度减慢。 但是本文的 AP 分数相比于

KAPAO-S 提高了 4. 8%。 相比于 KAPAO-M 的 AP 分数

提高 0. 1%,且速度是其 1. 7 倍。 在后处理过程中,本文

摒弃热图回归,后处理时间相比 HRNet-W48 等算法高了

15 ~ 25 倍。

表 1　 推理速度对比实验

Table
 

1　 Comparison
 

experiment
 

of
 

inference
 

speed
模型 输入大小 参数 / M 准确率 / % 召回率 / % 前置处理时间 / ms 后处理时间 / ms 总时间 / ms

DEKR-W32 512×512 29. 6 62. 4 69. 6 62. 6 34. 9 97. 5
HRNet-W48 256×256 63. 6 74. 2 79. 5 81. 2 53. 9 135. 1

HigherHRNet-W32 512×512 28. 6 63. 6 69. 0 46. 1 50. 1 96. 2
KAPAO-M 1

 

280×1
 

280 35. 8 68. 5 75. 5 30. 7 2. 9 33. 5
KAPAO-S 640×640 12. 5 63. 8 70. 2 14. 7 2. 8 17. 5

本文 640×640 13. 9 68. 6 79. 8 15. 2 3. 9 19. 1

3. 5　 不同算法的对比实验

　 　 同时在 COCO
 

test-dev 测试集中,证明了本文算法的

精确率。 分别选用先进的方法进行对比试验。 由表 2 可

知,对比实验分为基于热图回归的和基于关键点回归的



　 第 7 期 改进 KAPAO 的人体关键点检测 ·183　　 ·

两组。 其中表 2 上半部分为基于热图的方法,下半部分

为基于关键点回归的方法。
表 2　 不同算法的对比实验

Table
 

2　 Comparative
 

experiments
 

of
 

different
 

algorithms
(%)

模型 准确率 AP0. 5 AP0. 75 召回率

CPN 72. 1 91. 4 80. 0 78. 5
HRNet-W32 73. 4 89. 5 80. 7 78. 9

HigherHRNet-W32 66. 4 87. 5 72. 8 70. 3
Ref. [5] 72. 6 89. 5 80. 0 —
OpenPose 61. 8 84. 9 67. 5 66. 5
CenterNet 63. 0 86. 8 69. 6 —

SPM 66. 9 88. 5 72. 9 —
KAPAO-M 68. 5 89. 7 76. 0 76. 3

Mask
 

R-CNN
 

+RLE 67. 1 86. 7 72. 6 —
PRTR-W48 66. 2 85. 9 72. 1 72. 2

本文 68. 6 90. 1 79. 2 79. 8

　 　 本文方法显著优于其他基于关键点回归的方法。 相

比于 KAPAO-M 在参数量少 1 倍的情况下,AP 分数提高

了 0. 1%, 相 比 于 热 图 回 归 到 方 法, 本 方 法 超 过 了

OpenPose, HigherHRNet-W32
 

等 方 法, AP 0. 5 分 数 为

90. 1%,仅比最优方法 CPN 的 AP 0. 5 分数低了 1. 4%。 虽

然 AP 分数距最优的方法 HRNet-W32 还有一定距离,但
是由表 1 可知,本文的实时性表现是 HRNet 等基于热图

回归的方法无法比拟的,本文的速度相比于 HRNet 提高

了 7 倍。 以上结果表明本文算法在关键点检测方面的有

效性。
3. 6　 消融实验

　 　 在 COCO
 

val2017 验证集上进行消融实验,实验结果

如表 3 所示。 其中“ Π”表示使用该模块,由实验结果表

明数据增强方法扩充了数据集,与本文方法直接耦合,通
过对生成的多样的姿态的关键点的训练,使得 AP 分数

提高了 1. 1%。 BiFPN 相较于 PANet 通过对特征图的加

权融合,去除冗余特征图的干扰,使得 AP 分数提高了

0. 3%。 A-BiFPN 在 BiFPN 的基础上在不同特征图融合

部分加入注意力机制,增强了对不同语义信息特征图的

融合能力,使得 AP 分数提高了 1. 6%。 ADC 通过不同扩

张率的扩张卷积自适应的获得不同尺寸的感受野区域,
使得 AP 分数提高了 0. 8%。 在以上基础上,设计 SDR-
NMS 算法。 在 AP 分数提高了 1. 3%的同时,AR 分数提

高了 3. 7%,分析由于 SDR-NMS 使用置信度抑制方法提

高关键点对象的召回率,使用重定位方法提高了关键点

的定位精确度。
表 3　 不同模块的消融实验

Table
 

3　 Ablation
 

experiments
 

of
 

different
 

modules
PoseTrans BiFPN A-BiFPN ADC SDR-NMS 准确率 / % 召回率 / %

63. 8 70. 2
Π 64. 9 71. 3
Π Π 65. 2 72. 8
Π Π 66. 5 74. 9
Π Π Π 67. 3 76. 1
Π Π Π Π 68. 6 79. 8

3. 7　 可视化实验

　 　 本文在 COCO
 

test-dev 测试集进行可视化实验证本

文在多尺度,多人遮挡,小目标,罕见姿态等场景下的有

效性和泛化性。 并将可视化结果与原始 KAPAO-S 网络

进行对比,如图 10 所示,分别为遮挡,多人小目标,多尺

度,多人遮挡,罕见姿态的检测结果。
从图 10 中可以看出,本文算法与 KAPAO-S 模型对

特征较强的人脸关键点和姿态对象均具有较好的表现。
但 KAPAO-S 模型在遮挡,多尺度等具有挑战性的场景下

对局部较弱的关键点,如脚踝,臀部等关键点,表现较弱。
图 10(a)表明在遮挡的场景下,本文算法能够对关键点

进行正确的空间建模,更好的匹配人体姿态。 图 10( b)
表明在多人和小目标场景下,能够检测出原始算法未检

测出的小目标。 图 10(c)表明本文对于多尺度同样具有

较好的鲁棒性,能够检测出原网络未检测出的臀部关键

点。 图 10(d)表明本文在多人密集场景下,能够检测出

更多的人体关键点,具有较强的检测能力。 图 10( e) 表

明本文算法对罕见姿态的泛化性更好,能够检测出局部

特征较弱的人体关键点。

4　 结　 论

　 　 本文提出一种改进的 KAPAO 网络,有效提高了关

键点检测在具有挑战性的场景下对局部特征较弱的关键

点的检测精确度。 使用 PoseTrans 数据增强方法提高模

型的泛化性,增强对罕见姿态的检测能力;同时提出一种

注意力融合机制的 BiFPN 模块,在特征融合部分引入空

间注意力,增强特征融合能力;并设计自适应扩张卷积,
自适应获得特征图不同的感受野,从而克服多尺度问题。
并设计一种 SDR-NMS 方法,借助该方法提高关键点检测

精确度。 在 COCO 数据集上进行推理速度和精确度实

验,验证了本算的有效性和实时性。
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图 10　 可视化实验结果

Fig. 10　 Visualize
 

the
 

results
 

of
 

experiments
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