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改进 RetinaNet 的工艺流程检测算法∗

李　 玮　 高　 林

(青岛科技大学自动化与电子工程学院　 青岛　 266061)

摘　 要:现阶段,图像深度学习算法无法检测时序性的工艺流程问题。 本文针对针织机械山板总成的人为装配工艺进行研究,
提出 MS-RetinaNet 目标检测算法。 借鉴自然语言处理的思想,引入 Swin-Transformer 结构,保留了 CNN 结构的层次性,弥补了

CNN 结构对于高层语义信息融合不足的问题,增强了全局与细节学习能力;使用改进的 GIoU
 

Loss,增加判定因子式,缓解损失

计算退化的影响,优化边界框回归效果;根据多尺度目标参数,采用最佳锚框比,提高了召回率和检测精度;设计时序检测头,使
算法具有判别目标先后顺序和逻辑关系的能力。 实验结果表明,算法 AP 可达 90. 3%,高于当前主流算法 2%以上,单张图片检

测速度约 46
 

ms,满足了工艺流程的时序检测要求,综合性能优越。
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Abstract:
 

At
 

this
 

stage,
 

the
 

image
 

deep
 

learning
 

algorithm
 

cannot
 

detect
 

the
 

chronological
 

process
 

problem.
 

In
 

this
 

paper,
 

the
 

artificial
 

assembly
 

process
 

of
 

the
 

mountain
 

board
 

assembly
 

of
 

knitting
 

machinery
 

is
 

studied,
 

and
 

the
 

MS-RetinaNet
 

object
 

detection
 

algorithm
 

is
 

proposed.
 

Using
 

the
 

idea
 

of
 

natural
 

language
 

processing
 

for
 

reference,
 

the
 

Swing-Transformer
 

structure
 

is
 

introduced
 

to
 

retain
 

the
 

hierarchy
 

of
 

CNN
 

structure,
 

make
 

up
 

for
 

the
 

lack
 

of
 

high-level
 

semantic
 

information
 

fusion
 

in
 

CNN
 

structure,
 

and
 

enhance
 

the
 

ability
 

to
 

learn
 

overall
 

and
 

details.
 

The
 

improved
 

GIoU
 

Loss
 

is
 

used
 

to
 

increase
 

the
 

judgment
 

factor
 

formula,
 

mitigate
 

the
 

impact
 

of
 

loss
 

calculation
 

degradation,
 

and
 

optimize
 

the
 

regression
 

effect
 

of
 

the
 

bounding
 

box.
 

According
 

to
 

the
 

multi-scale
 

target
 

parameters,
 

the
 

best
 

anchor
 

frame
 

ratio
 

is
 

adopted
 

to
 

improve
 

the
 

recall
 

rate
 

and
 

detection
 

accuracy.
 

The
 

chronological
 

detector
 

is
 

designed
 

to
 

enable
 

the
 

algorithm
 

to
 

distinguish
 

the
 

sequence
 

and
 

logical
 

relationship
 

of
 

the
 

target.
 

The
 

experimental
 

results
 

show
 

that
 

the
 

algorithm
 

AP
 

can
 

reach
 

90. 3%,
 

which
 

is
 

more
 

than
 

2%
 

higher
 

than
 

the
 

current
 

mainstream
 

algorithm.
 

The
 

detection
 

speed
 

of
 

a
 

single
 

image
 

is
 

about
 

46
 

ms,
 

meeting
 

the
 

chronological
 

detection
 

requirements
 

of
 

the
 

process
 

flow,
 

and
 

the
 

overall
 

performance
 

is
 

superior.
Keywords:technological

 

process;
 

MS-RetinaNet;
 

Swin-Transformer;
 

judgment
 

factor
 

formula;
 

detector
 

head

0　 引　 言

　 　 近年来,随着新一代信息技术的推广应用,我国大批

针织[1] 机械公司也逐步开始进行智能化改造,将人工智

能[2] 技术应用于生产过程中。 目前大规模量化生产智能

化应用较多,但针对生产工艺的应用研究较少,工艺过程

多数还依赖人工操作。 人工操作易出现操作不规范、错
误操作等问题,这种问题在针织机械山板总成系统的装

配工艺上尤为明显。 由于核心系统皆为进口,我国尚无

明确的标准工艺规范,装配方式优劣存在争议,易出现工

艺流程混乱和操作失误等问题,导致生产效率低、增加生

产成本。 当前检测手段局限于人工经验,智能化水平低

下,因此,山板总成的装配工艺检测成为针织机械领域的
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一个研究重点。 随着计算机视觉技术[3] 的发展,基于深

度学习[4] 的目标检测技术在工业生产线上的应用越来越

成熟。 当前主流图像目标检测算法分为以 YOLO[5] 系列

为代表的一阶段算法和 RCNN[6] 系列为代表的二阶段算

法。 针对图像算法存在的静态、无时序参数等问题,一些

学者利用视频目标检测算法进行时序性问题的研究。 参

考文献[7]
 

提出了一种改进的区域 3 D 卷积神经网络,
使用时域反卷积网络增加特征图长度,提高时域上行为

的定位精度;参考文献[8]
 

提出基于金字塔结构的无锚

框时序行为检测方法,设计了嵌入自注意力模块,建模多

尺 度 类 激 活 热 力 图, 有 效 提 升 了 检 测 效 果。
Transformer[9] 的应用进一步推动了时序行为检测的发

展,参考文献[10] 提出了一个新颖的双分支检测框架,
双分支协作机制利用行为类别标签和行为帧之间的互补

信息,获得更精确的检测结果;参考文献[11] 提出了一

种基于端到端 Transformer 的 TAD 方法,加入时间上可变

形的注意力模块,实现了低计算、高性能。
上述研究针对视频时序行为检测算法提出了一些改

进策略,应用效果优异,但时序性问题的研究未涉及图像

检测领域。 本文针对山板总成的装配工艺流程问题,采
用基于深度学习的图像目标检测技术对其进行研究。 算

法框架使用 RetinaNet[12] 结构, 骨干网络采 用 Swin-
Transformer,缓解卷积操作的局限,增加算法的全局泛化

能力;使用滑动窗口模式,减少 Transformer 结构中注意力

机制的计算量;改进了 GIoU
 

Loss[13] 策略,以判定因子式

弥补损失退化的不足,优化模型训练方向;使用最佳锚框

比,增加特殊尺度目标的关注度,提升样本召回效果;创
新设计了时序检测头,在不增加算法冗余的同时,使算法

具备良好的时序检测功效。 此方法通过图像流数据实现

对山板总成装配工艺流程的精准检测,有效降低了误操

作率,为时序工艺检测提供了新思路。

1　 MS-RetinaNet 网络结构

1. 1　 整体网络与检测头结构

　 　 RetinaNet 是一阶段目标检测算法,整体框架包含

ResNet-FPN[14] 结构和 2 个全连接网络,因其提出了 Focal
 

Loss[15] 分类损失函数,使其精度可以高于骨干网络为

VGG-16[16] 的 Faster
 

RCNN 算法。
改进的网络以 Swin-Transformer 作为特征提取,融合

FPN 结构,在模型测试端的全连接分类和回归网络后,增
加具有时序功效的检测头。 使模型在目标检测的基础

上,对各类别目标的出现顺序和逻辑关系进行判定,实现

目标时序检测。 如图 1 所示,检测头依次设置两层结构

和内置编码。 首先是类别层,在此层进行类别的处理,对
算法模型训练出的各类别进行排序和选择,使检测头能

按照预设的时序将选定类别输出至下一层;第 2 层是框

选分数层,对输入类别的预测框进行阈值判别,若预测框

概率分数符合阈值判别标准,则视为通过,下一次检测,
类别层按预设选定下一个类别输出至框选分数层;若预

测框概率分数未达到阈值判别标准,后续检测,类别层继

续输出当前类别,框选分数层继续执行其阈值判别,直到

符合阈值标准,类别层才执行下一个类别的输出。 同理,
直到第 n 个类别输出完成,返回至预设的第 1 个类别,以
此循环检测判别,形成时序性。 其中阈值设定需要符合

实际应用场景,为了保证模型的实际检测精确度,本文设

定检测头阈值为 0. 9。

图 1　 网络整体结构

Fig. 1　 Overall
 

network
 

structure

　 　 逻辑关系的检测采用内置编码设定,在类别层固定

的时序中插入编码,使下一轮检测一个或多个类别满足

某种逻辑关系,才能继续执行。 假设在第 3 个类别检测

后,设置编码第 2、3 类别需要同时存在且满足框选分数

层的要求,若检测符合标准,则下一次检测执行第 4 类别

的判别;反之将继续执行此逻辑检测,直至执行通过。
1. 2　 Swin-Transformer 结构

　 　 Swin-Transformer 网络整体结构具有层次性,自底向
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上的下采样[17] 倍数成 2 倍增加,能够有效提取出具有层

次性的特征图。 相对于纯卷积结构,更加聚焦于图像中

的感受野,应用于多目标动态特征的目标检测效果优异。
首先,图像送入 Patch

 

Partition[18] 层,这一步相当于卷积

的下采样操作。 将图像划分出相同大小的块,每个块由

4×4
 

pixels 组成,嵌入向量后,在通道方向上进行展开平

铺。 一般采用的是 RGB 三通道图像,且每个块有 16 个

像素,所以展开平铺后通道 48。 故通过 Patch
 

Partition 后

图像宽高变为原来的 1 / 4,深度变为原来的 16 倍,如图 2
所示。

图 2　 Swin-Transformer 结构

Fig. 2　 Swin-Transformer
 

structure

　 　 接着经过 4 个 stage,stage1 中的 Linear
 

Embedding 层

对送入图像的每个像素通道做深度变换,深度由 48 变为

C,再送入 Swin
 

Transformer
 

Block;剩余的 3 个 stage 都是

重复经过 Patch
 

Merging 层下采样和 Swin
 

Transformer
 

Block 计算,类似于 ResNet-FPN 的操作;但是不同点在于

ResNet-FPN 采用卷积和池化进行倍数下采样,而经过

Patch
 

Merging 层操作,就会将特征图分为多个 2×2 的块,
把每个块相同位置的像素特征取出并组合在一起,在图

像深度方向进行拼接,这样就不存在量化误差。 此时特

征图的高和宽就会减半,深度就会变为原来的 4 倍。 最

后经过一个全连接层,特征图的高和宽不变,深度翻倍。
每一个 stage 设置的 Swin

 

Transformer
 

Block 都是偶数次,
内部先经过一个窗口多头自注意力结构( windows

 

multi-
head

 

self-attention[19] ,W-MSA),再经过一个滑动窗口多

头自注意力结构(shifted
 

windows
 

multi-head
 

self-attention,
SW-MSA)。 最后通过 MLP [20] 层,实际相当于一个全连

接层和激活函数,进行分类操作。
1. 3　 窗口多头自注意力结构

　 　 W-MSA 是在多头自注意力机制 ( multi-head
 

self-
attention,MSA)的基础上做了改进。 如图 3 所示,假设第

n 层的 W-MSA 将特征图划分为相同大小的 4 个窗口,每
个窗口为 4×4,分别对等分的窗口区域内做 MSA,增加区

域特征信息的精确性,且每个窗口内的计算互不影响。
在第 n+1 层使用 SW-MSA,将 W-MSA 特征图进行特定像

素的平移,可以等效为向右下方沿对角线平移 2 个像素

块,使第 n 层 W-MSA 划分的相邻窗口区域之间保持一定

的信息交互,得到 9 个大小不一的窗口。
再将新划分的 9 个窗口进行平移,如图 4 所示,将

A、B 和 C 平移到底部,接着将 D、G 和 A 平移到最右侧,

图 3　 W-MSA 和 SW-MSA
Fig. 3　 W-MSA

 

and
 

SW-MSA

E 作为一个窗口,F 和 D 组成一个窗口,H 和 B 组成一个

窗口,I、G、C、A 组成一个窗口,这样便拼接成和第 n 层

W-MSA 中 4 个大小相同的窗口,然后分别在 4 个拼接的

窗口内进行 MSA 计算,目的是为了避免 9 个窗口计算额

外增加了训练的复杂度。

图 4　 SW-MSA 原理

Fig. 4　 SW-MSA
 

principle

同时,由于平移后的窗口图像特征乱序,为了防止拼

接窗口在计算时,其不同小窗口发生信息错乱,采用

mask
 

MSA 的方法;如图 5 所示,对区域 F 做 MSA,区域 F
内的所有像素与区域 D 内的像素依次做 q、k 计算, q 是

索引图像特征点的查询向量, k 是指示图像特征重要程

度的键向量;计算结果减去 100,得到一个相对小的值,
经过 Softmax 后权重变为 0,这样进行 MSA 操作时,非当

前计算窗口 D 的像素值权重都为 0,等效于只对当前计
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算 F 的每个像素进行 MSA。

图 5　 SW-MSA 计算

Fig. 5　 SW-MSA
 

calculation

所有窗口 MSA 计算完成后,需要将窗口平移回移动

前的位置,包括计算得到的数据结果,这样的计算方式不

存在量化误差, 比卷积更有优势。 最后, 通过一个

Encoder 全连接层结构,找到需要的编码,将该编码对应

的特征向量取出,经过 MLP 结构生成最终结果。
1. 4　 改进的 GIoU

 

Loss
　 　 在原始 RetinaNet 算法中,采用 Smooth

 

L1
 

Loss 作为

边界框回归损失,但它与实际检测结果的好坏关联度不

够高,存在 Smooth
 

L1
 

Loss 值相同而实际预测框和真实框

交并不同的问题。 IoU
 

Loss 能有效解决此问题,但其缺

点较多,对此,引入 GIoU
 

Loss,如式(1)所示:

LGIoU = 1 - IoU + | C \(A ∪ B) |
| C |

(1)

式中: A 为真实框面积; B 为预测框面积; C 为包含 A 和

B 的最小矩形框面积; IoU 是 A 和 B 的交并比;GIoU
 

Loss
先计算 C 中除 A ∪ B 以外的面积和 C 的比值,再加上 1 -
IoU ,这样更关注非重合区域。 当 A 和 B 没有交集时,
IoU 值为 0,但 GIoU

 

Loss 仍可优化训练;当 A 和 B 的 IoU
相同,两个框重合方向或角度不同时, C 的值不同,GIoU

 

Loss 也不同,有一定的区分度。 但当预测框与真实框出

现水平重合、竖直重合、包含和被包含等情况时,如图 6
所示,实线框分别代表 A和 B,C 为虚线框,此时 C 与 A∪
B 值相同,导致 GIoU

 

Loss 退化为 IoU
 

Loss。
针对 GIoU

 

Loss 存在的问题,本文提出改进策略,在
损失函数中增加判定因子式,如式(2)、(3)、(4)所示:

图 6　 GIoU
 

Loss 失效的情况

Fig. 6　 Failure
 

of
 

GIoU
 

Loss

S i =| C - (A ∪ B) | (2)

α =
1,S i = 0
0,S i ≠ 0{ (3)

Lp = α
(A ∪ B) - (A ∩ B)

A ∪ B
(4)

式中: S i 表示 C 和 A ∪ B 的面积差值; α 是判定因子; Lp
是判定因子式,表示 A 和 B 并集中非交集区域与 A 和 B
并集的比值。 改进后的 GIoU

 

Loss 函数如式(5)所示:

LGIoU = 1 - IoU + | C \(A ∪ B) |
| C |

+

α
(A ∪ B) - (A ∩ B)

A ∪ B
(5)

当 S i 不为 0 时, α 始终为 0,则 Lp 为 0,不影响原始

GIoU
 

Loss 的计算;当出现图 6 问题时,即 S i 为 0,α 为 1,
Lp 不为 0,防止 GIoU

 

Loss 退化为 IoU
 

Loss,使模型更关注

非交集区域,反应真实框与预测框重合度的效果更好,提
升边界框的回归效果,对模型训练优化的走向起着至关

重要的作用。

2　 实验结果与分析

2. 1　 实验条件与数据集

　 　 本实验数据由海康彩色工业相机采集,配备 400 ×
104

 

pixels 的摄像头,相机可设置连续抓拍;相机连接服

务器,服务器基于 Ubuntu 系统,搭载 GeForce
 

RTX
 

2080Ti
显卡,48 G 显存;采用 Python 编程语言,算法环境由

Pytorch 深度学习框架构建。 实验测试运行时,相机连续

抓拍设置为 1
 

s / 次;由于彩色工业相机抓拍图片的质量

较大,为了保证时效性和传输稳定性,采用本地服务器多

点多线程传输,连续抓拍的图片保存在预设的本地磁盘

中,通过服务器自动检测并给出工艺流程判别结果。
实验采用 coco 数据集格式,样式如图 7 所示,图片总

数为 7
 

460,除去背景分为 8 类,其中各类别标注框的数

量分别为三角电机(Stepper
 

motor1,S-m1)4244、推针电机

(Stepper
 

motor2,S-m2)4239、度目电机(Stepper
 

motor3,S-
m3) 4378、调试螺丝刀 ( Commissioning

 

screwdriver, C-s)
844、 千 分 表 ( dial

 

indicator, D-i ) 1974、 润 滑 铁 片

(lubricating
 

iron
 

sheet,L-i-s)848、选针器(needle
 

selector,
N-s)4024、螺纹锁固剂( thread

 

locking
 

agent,T-l-a) 1153,
总计 21

 

704 个样本标注框。
2. 2　 改进的锚框比

　 　 由于 RetinaNet 属于 Anchor-based 算法,是根据初始

的锚框参数来训练模型。 RetinaNet 算法初始的锚框长

宽比率为 0. 5、1 和 2,对应 3 种固定的尺度和锚框基础边

长。 这样做只能满足大部分样本,而小部分样本可能会

受影响,导致召回率变差,回归效果受损,影响检测精度。
本文提出改进固定锚框比的方法,如图 8 所示,数据集中

小部分样本采用初始锚框比无法适用,需要增加合适的

锚框比;根据锚框长宽比选取原则,不能过于极端,且比
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图 7　 数据集样本

Fig. 7　 Data
 

set
 

sample

率乘积基本保持为 1;故除原有比率以外,选择并添加比

率 5 和 0. 2,改进固有的比率,优化模型的训练方向,提升

对小部分样本的召回和边界框回归效果;而样本真实框

基础边长与原有锚框基本无差,故不变更。

图 8　 各锚框比数量

Fig. 8　 Ratio
 

and
 

quantity
 

of
 

each
 

anchor
 

box

2. 3　 山板总成的工艺检测流程

　 　 研究对象山板总成如图 9 所示,主要由山板、三角电

机、推针电机、度目电机和选针器组成。
装配工艺大体分为 6 个关键点步骤,其中省略重复

步骤:
1)装配 2 个三角电机,先进行润滑操作,再安装至山

图 9　 山板总成

Fig. 9　 Mountain
 

plate
 

assembly

　 　 　 　 　

板上。
2)用调试螺丝刀检查三角电机组装的齿轮连杆是否

滑动顺畅,必须要调节一下吻合度。
3)装配 2 个推针电机,先进行润滑和螺纹锁固操作,

再安装至山板上。
4)装配 4 个度目电机。
5)装配 4 个选针器。
6)检查山板总成的中山高度差是否合适。
每一步装配工艺必须严格按照规范工艺流程来执

行,否则可能导致山板总成的使用出现问题。 实际视觉

算法检测设计时,根据检测操作器件及其逻辑关系来确

认当前工艺流程是否完成;配合改进的时序检测头,设置

6 个编码;1)插入编码 1,检测 S-m1 和 L-i-s 同时存在,再
插入编码 2,检测 2 个 S-m1 并存;2)检测是否存在 C-s;
3)插入编码 3,检测 S-m2 和 L-i-s 同时存在,接着检测 T-
l-a,再插入编码 4,检测 2 个 S-m2 并存;4)插入编码 5,检
测 4 个 S-m3 并存;5)插入编码 6,检测 4 个 N-s 并存;6)
检测是否存在 D-i。
2. 4　 训练与测试结果

　 　 本文算法使用的 Swin-Transformer 有 Tiny、 Small、
Base、Large 结构,模型选择时需综合考虑网络参数带来

的复杂度和精度平衡问题。 以 RetinaNet 为模型框架,进
行多版本 Swin-Transformer 的骨干网络参数消融实验,实
验结果如表 1 所示,其中输入尺寸 384 × 384 的 Swin _
Large 模型在实验软硬件基础上存在内存溢出,无法训练

与测试。

表 1　 骨干网络消融实验

Table
 

1　 Core
 

network
 

ablation
 

experiment
算法框架 骨干网络 Input_size Windows C AP Params GFLOPs FPS

RetinaNet

Swin_Tiny 224×224 7×7 96 88. 3 37. 13 212. 95 21. 6
Swin_Small 224×224 7×7 96 88. 8 58. 28 302. 94 15. 5
Swin_Base 224×224 7×7 128 89. 6 96. 89 445. 35 8. 9
Swin_Base 384×384 12×12 128 89. 6 97. 03 457. 06 8. 8
Swin_Large 224×224 7×7 192 89. 9 206. 56 851. 55 4. 1
Swin_Large 384×384 12×12 192
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　 　 由表 1 可以看出,随着骨干网络参数的增加,整体模

型的 AP、参数量、GFLOPs 逐步增加,FPS 逐步减小,但
AP 的提升幅度远不及 FPS 降低幅度带来的影响。 综合

考虑模型部署后存在的检测精度与速度偏差问题,选择

Swin_Tiny 作为本文算法的骨干网络。
基于此,本文选择包括 RetinaNet 算法、small 版本的

YOLOX 算法( YOLOX _ s, YOLOX)、 ResNet-FPN 和 ROI
 

Align 结构的 Faster
 

RCNN 算法(Faster
 

RCNN,F-RCNN)、
使 用 Smooth

 

L1
 

Loss 的 Swin-Transformer-Tiny 结 构

RetinaNet 算法 ( L1-Swin-RetinaNet, L1-S-t)、 使用 GIoU
 

Loss 和 最 佳 锚 框 比 的 Swin-Transformer-Tiny 结 构

RetinaNet 算法(G-Swin-RetinaNet,G-S-t)、使用改进 GIoU
 

Loss 和 最 佳 锚 框 比 的 Swin-Transformer-Tiny 结 构

RetinaNet 算法(MS-RetinaNet,MS-R-t)进行对比实验,各
模型边界框损失和分类损失曲线如图 10 所示,由于

YOLOX 算法训练的独特性,迭代次数与其他算法不一

致,图示部分未达到收敛。
由图 10 ( a) 可以看出, 得益于 RPN 结构, Faster

 

RCNN 训练损失收敛最快,YOLOX 收敛相对最慢,损失

值最大;由于 GIoU
 

Loss 计算特性,训练前期收敛较慢,本
文 MS-RetinaNet 最 终 收 敛 的 损 失 值 要 小 于 G-Swin-
RetinaNet,表明改进 GIoU

 

Loss 的有效性。 由图 10( b)看

出,YOLOX 收敛速度和损失值表现最差;Faster
 

RCNN 依

旧收敛最快,分类损失值和剩余算法收敛后几乎相同;使
用 Swin-Transformer 结构的 RetinaNet 算法收敛速度都要

快于 RetinaNet 算法,表明 Swin-Transformer 作特征提取

的优越性。
为了进一步验证本文算法性能的优越性,结合 L1-

　 　 　 　 　

图 10　 训练损失曲线

Fig. 10　 Training
 

loss
 

curve

Swin-RetinaNet、 G-Swin-RetinaNet、 RetinaNet、 YOLOX 和

Faster
 

RCNN 算法,在测试集上对其最优的训练模型进行

测试,以多种指标验证,结果如表 2 所示。 由于增加检测

头对模型检测速度在 ms 级上几乎无影响,FPS 可忽略检

测头影响;本实验中无小目标样本,故表 2 无 AP S 和 ARS

的指标。
表 2　 各算法模型性能对比

Table
 

2　 Performance
 

comparison
 

of
 

algorithm
 

models
模型 AP / % AP50 / % AP75 / % APS / % APM / % APL / % AR / % ARS / % ARM / % ARL / % FPS GFLOPs

YOLOX 87. 0 98. 2 94. 9 62. 5 87. 8 90. 9 72. 4 89. 9 77. 6 33. 32
RetinaNet 83. 8 94. 3 91. 2 58. 3 85. 1 88. 4 62. 4 89. 5 22. 2 207. 46

Faster
 

RCNN 87. 8 97. 8 96. 4 70. 5 88. 7 90. 6 70. 5 91. 4 16. 8 206. 70
L1-Swin-RetinaNet 88. 3 97. 0 94. 6 69. 9 89. 2 91. 0 69. 8 91. 8 21. 6 212. 95
G-Swin-RetinaNet 89. 1 97. 1 95. 3 70. 3 90. 1 91. 6 75. 5 92. 4 21. 8 212. 95

MS-RetinaNet 90. 3 97. 2 96. 4 78. 0 91. 3 92. 7 79. 9 93. 5 21. 8 216. 48

　 　 从表 2 可以看出,L1-Swin-RetinaNet 的 AP 和 AR 表

现强于原始 RetinaNet,说明 Swin-Transformer 结构的特征

提取 更 全 面, 对 检 测 精 度 有 一 定 的 提 升; G-Swin-
RetinaNet 的指标相对优于 L1-Swin-RetinaNet,表明 GIoU

 

Loss 搭配最佳锚框比使算法精度得到进一步优化;采用

改进的 GIoU
 

Loss 和最佳锚框比,提升了边界框回归效

果,使 MS-RetinaNet 的检测精度最高,AP 达到了 90. 3%,
除 AP 50 略逊于 YOLOX 的 98. 2%,其他 AP 指标高于实

验所有模型,AP M 甚至高出第 2 名 7. 5%,各项召回率也

取得最佳,表明本文的改进策略优越,较大的提升了模型

的性能; YOLOX 的检测速度是绝对的优势, 而 MS-
RetinaNet 位于各模型第 3,FPS 达到了 21. 8,快于 Faster

 

RCNN,但 Transformer 结构计算复杂度高,GFLOPs 稍高

于 RetinaNet 算法。
实际模型评估中,各算法模型对不同类别的检测效

果不一。 为了更好的评估各模型的优劣,本文对测试集

中各类别 AP 进行评估,如图 11 所示。
由图 11 可以看出,YOLOX 的各类别 AP 较为平均,
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图 11　 各模型各类别 AP 对比

Fig. 11　 Comparison
 

of
 

various
 

models
 

and
 

categories
 

of
 

AP

优于 RetinaNet,略逊于 Faster
 

RCNN;MS-RetinaNet 各类

　 　 　 　

别 AP 值表现优越,除 T-l-a 类别外,均取得最佳;尤其是

L-i-s,此类样本标注框相对较少,且长宽比偏离固定的训

练锚框比,G-Swin-RetinaNet 使用改进的锚框比,精度稍

强于 L1-Swin-RetinaNet 和 RetinaNet,但相比 Faster
 

RCNN
和 YOLOX 差距明显。 原因在于 YOLOX 拥有优化的锚

框生成策略,而 Faster
 

RCNN 存在 RPN 结构,两次边界框

的回归 校 正, 使 得 模 型 受 此 类 问 题 影 响 较 小; MS-
RetinaNet 采用改进的 GIoU

 

Loss 和最佳锚框比,增强对

多尺度样本的关注与优化,实现了对该类算法缺点的弥

补,AP 达到 76. 4%,相对最优。
为了展示本文算法的实际检测效果,对比各类算法,

依次选择 C-s 特征不全、宽高比差距较大和静态多目标

的抓拍图像进行测试,结果如图 12 所示。

图 12　 检测结果

Fig. 12　 Test
 

result

　 　 由图 12 可以看出,YOLOX 的实际检测精度欠佳,未
能检测出 C-s,导致工艺流程误缺失影响时序检测效果;
对 C-s 的检测结果只有 MS-RetinaNet 和 Faster

 

RCNN 符

合时序检测头的阈值要求,且定位效果较好;Retinanet 漏
检出了 L-i-s,检测效果差,其中 L-i-s 概率分数大于阈值

0. 9 的仅有 MS-RetinaNet;L1-Swin-RetinaNet 和 RetinaNet
出现了相同的问题,将 S-m3 误检测,算法检测出的结果

多于实际情况,造成时序检测混乱;Faster
 

RCNN 和 G-
Swin-RetinaNet 对目标定位不够精准,若出现实际工艺抓

拍到不同角度目标,可能检测出错,且存在多数检测未达

到阈值标准的问题;MS-RetinaNet 检测效果最好,使用

Swin-Transformer 作骨干网络,改进 GIoU
 

Loss 策略和最

佳锚框比,优化模型特征提取和训练走向,有效的解决了

一阶段系列算法边界框预测错误和回归不精准的问题,
精度更甚改进的 Faster

 

RCNN;相比于 YOLOX,虽然检测

速度稍慢,但实际检测效果相对提升较大,不存在漏检,
概率分数和定位精度高,检测鲁棒性更强,适合于实际

应用。
本文 MS-RetinaNet 算法检测的完整工艺流程如

图 13 所示,正确的工艺检测流程按照实线箭头方向执

行,首先检测到工艺执行 L-i-s 润滑 S-m1,其次检测到 2
个 S-m1 同时存在并装配完成,接着检测到 C-s 调试 S-m1
连接处滑杆的吻合度,调试完后装配 S-m2;先检测到

L-i-s 润滑 S-m2,T-l-a 螺纹锁固 S-m2,执行完成后检测到

2 个 S-m2 都存在且装配完成;继续检测到 4 个 S-m3 逐

个装配完成;4 个 N-s 装配完成;最后检测到使用 D-i 测
试山板中山的高度差;每一步检测出待检测目标,再执行

下一步,循环往复。 图中虚线箭头指向的是当前错误工

艺步骤,当算法检测到错误时,即当前正确为 C-s 调试

S-m1,而检测到 L-i-s 润滑 S-m2,算法模块配合后端进行
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错误提示;继续执行检测当前工艺步骤任务,直到后续输

入检测到 C-s 调试 S-m1 的步骤,再执行流程的下一步检

测;其中任何一步出现误检和漏检,都会导致后端系统误

动作,造成工艺流程检测的出错,无法起到时序检测的效

果,故算法精度必须严格把控。

图 13　 完整的工艺流程检测

Fig. 13　 Detection
 

of
 

complete
 

process

3　 结　 论

　 　 本文基于 RetinaNet 算法模型,将多头滑动窗口自注

意力结构的 Swin-Transformer 引入,增加特征提取的全局

精确度,减少模型量化误差;选择最小结构 Tiny,最大程

度减少计算量,有效地缓解了 Transformer 结构的厚重感;
采用改进的 GIoU

 

Loss 策略,损失退化时,通过判定因子

式引导模型训练方向,来提升边界框回归效果;根据实际

样本,改进固定锚框比率,提高多尺度样本的召回率;以
优异的检测精度搭配设计的时序检测头,准确检测出工

艺流程的正误;基本达到实时精准检测的要求,从图像端

实现工艺流程的时序检测。 后续研究对模型检测速度进

一步优化,并使其能够定量分析检测结果,应用于更多工

业场景。
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