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Improved RetinaNet process flow detection algorithm

Li Wei Gao Lin

(School of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China)

Abstract: At this stage, the image deep learning algorithm cannot detect the chronological process problem. In this paper, the artificial
assembly process of the mountain board assembly of knitting machinery is studied, and the MS-RetinaNet object detection algorithm is
proposed. Using the idea of natural language processing for reference, the Swing-Transformer structure is introduced to retain the
hierarchy of CNN structure, make up for the lack of high-level semantic information fusion in CNN structure, and enhance the ability to
learn overall and details. The improved GloU Loss is used to increase the judgment factor formula, mitigate the impact of loss calculation
degradation, and optimize the regression effect of the bounding box. According to the multi-scale target parameters, the best anchor
frame ratio is adopted to improve the recall rate and detection accuracy. The chronological detector is designed to enable the algorithm to
distinguish the sequence and logical relationship of the target. The experimental results show that the algorithm AP can reach 90. 3%,
which is more than 2% higher than the current mainstream algorithm. The detection speed of a single image is about 46 ms, meeting the
chronological detection requirements of the process flow, and the overall performance is superior.
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Table 2 Performance comparison of algorithm models
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YOLOX 87.0  98.2 94.9 62.5 87.8  90.9 72.4 89.9 77.6  33.32
RetinaNet 83.8  94.3 91.2 58.3 85.1  88.4 62.4 89.5 22,2 207.46
Faster RCNN 87.8  97.8 96.4 70.5 88.7  90.6 70.5 91.4  16.8  206.70
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Fig. 12 Test result
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