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摘　 要:随着锂离子电池系统在电动汽车中的广泛应用,电池组短路引起的安全问题日益凸显,因此动力电池的状态监测与故

障诊断备受关注。 针对当前非模型故障诊断方法存在的泛用性低、抗干扰性差和电池组不一致性突出等问题,提出了一种基于

统计分析和密度聚类的电池组短路故障诊断方法。 首先根据遗忘机制,利用核密度估计的相对熵和相关系数提取电池组的故

障信息,用于识别短路引起的电池电压和温度变化;接着采用基于密度的空间噪声聚类算法( DBSCAN)自动识别短路故障电

池。 该方法的鲁棒性在噪声干扰和电池组较大不一致性的条件下得到了有效验证。 随后,在不同程度的微短路情况下(短路

电阻分别为 1、5 和 10
 

Ω)进行故障诊断,结果表明在 10
 

Ω 短路情况下故障诊断的准确率能够达到 92. 17%。 最后通过对比分

析,表明该诊断方法能够有效检测和定位短路电池,并且故障越严重,诊断所需时间越短。
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Abstract:
 

With
 

the
 

wide
 

application
 

of
 

lithium-ion
 

battery
 

systems
 

in
 

electric
 

vehicles,
 

the
 

safety
 

issue
 

caused
 

by
 

short-circuit
 

fault
 

of
 

battery
 

pack
 

is
 

becoming
 

more
 

serious.
 

Therefore,
 

the
 

studies
 

on
 

state
 

monitoring
 

of
 

battery
 

pack
 

and
 

fault
 

diagnosis
 

are
 

receiving
 

more
 

attention.
 

To
 

deal
 

with
 

the
 

issues
 

of
 

low
 

generality,
 

poor
 

anti-interference
 

capacity
 

and
 

critical
 

inconsistency
 

of
 

battery
 

pack
 

existed
 

in
 

non-model-based
 

fault
 

diagnosis
 

methods,
 

a
 

short-circuit
 

fault
 

diagnosis
 

method
 

based
 

on
 

statistical
 

analysis
 

and
 

density
 

clustering
 

is
 

proposed
 

for
 

battery
 

packs
 

in
 

this
 

paper.
 

Firstly,
 

the
 

fault
 

information
 

of
 

battery
 

pack
 

is
 

extracted
 

by
 

using
 

the
 

relative
 

entropy
 

of
 

kernel
 

density
 

estimation
 

(KDE)
 

and
 

correlation
 

coefficient,
 

based
 

on
 

a
 

forgetting
 

mechanism.
 

The
 

fault
 

information
 

is
 

used
 

to
 

identify
 

the
 

changes
 

of
 

batteries’
 

voltage
 

and
 

temperature
 

caused
 

by
 

short-circuit
 

fault.
 

Then,
 

the
 

short-circuit
 

battery
 

can
 

be
 

automatically
 

identified
 

by
 

adopting
 

the
 

density-based
 

spatial
 

clustering
 

of
 

applications
 

with
 

noise
 

(DBSCAN)
 

algorithm.
 

The
 

robustness
 

of
 

the
 

proposed
 

method
 

is
 

validated
 

under
 

conditions
 

of
 

noise
 

interference
 

and
 

serious
 

inconsistency.
 

Furthermore,
 

the
 

effectiveness
 

of
 

the
 

proposed
 

method
 

is
 

verified
 

under
 

different
 

short-circuit
 

degree
 

with
 

1,
 

5
 

and
 

10
 

Ω
 

short-circuit
 

resistors,
 

and
 

the
 

accuracy
 

of
 

short-circuit
 

fault
 

diagnosis
 

can
 

reach
 

92. 17%
 

in
 

the
 

case
 

of
 

a
 

10
 

Ω
 

short-circuit
 

resistor.
 

By
 

comparative
 

analysis,
 

the
 

results
 

show
 

that
 

the
 

proposed
 

diagnosis
 

method
 

can
 

effectively
 

detect
 

and
 

locate
 

short-circuit
 

batteries,
 

and
 

the
 

more
 

severe
 

the
 

fault,
 

the
 

shorter
 

the
 

diagnosis
 

time
 

required.
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0　 引　 言

　 　 在全球气候变暖和实现 2030 年“碳达峰”与 2060 年

“碳中和”目标的背景下,以电化学储能为代表的新型储

能电池迎来了大规模发展,成为新能源领域的重要支撑。
作为当前新能源领域典型的储能器件,锂离子电池被认

为是最具前景的一类电池。 锂离子电池因具有能量密度

高、循环寿命长、无记忆效应等优点,在电子设备、新能源

动力汽车、工程动力、通信、电动船舶、家用储能、电力储

能等领域得到了广泛应用[1-2] 。 然而,随着锂离子电池在

各个领域的广泛普及,其带来的安全问题和安全隐患也

日益突出。 近年来,由锂离子电池引发的起火、爆炸等安

全事故频发,对人们的生命、财产安全造成了巨大威胁。
引发锂离子电池出现安全问题的原因有电池自然老

化和电池滥用,其中电池滥用是引发电池安全事故的主

要因素。 电池滥用会导致电池系统发生各种故障,加速

电池退化,严重时会导致电池热失控。 热失控是由于电

池出现放热连锁反应引起电池温升速率急剧变化的过热

现象[3-4] 。 单个电池发生热失控后,若不及时处理,高温

会引发相邻电池发生热失控,形成链式反应,从而造成整

个电池组的热失控[5] 。 触发电池热失控的主要原因是电

池内部短路,根据短路电阻或短路电流大小可将短路分

为微短路和严重短路[6] 。 从发生微短路到出现热失控会

经历一个很长的过程,而发生严重短路或短路后期,短路

电阻只有毫欧大小,会立即导致热失控事故,检测结果将

毫无意义。 因此,如果在微短路或短路的早期阶段,如短

路电阻在 100 / 10 / 1
 

Ω,其发热量低,有反应时间应对发

生的事故能对电池短路故障进行诊断和安全性预警,将
有利于减少电池热失控的发生,从而降低由锂离子电池

引发的安全事故[7-8] 。
对电池系统进行故障诊断是电池管理系统( battery

 

management
 

systems,BMS)的核心功能之一,通过 BMS 采

集的电池电压、电流和温度等信息可以对电池系统进行

诊断。 常用的电池故障诊断方法有 2 种:基于模型的方

法和基于非模型的方法。
基于模型的方法需要辨识电池模型参数。 通过估计

模型的输出与实际测量值形成残差,该残差通常是电压、
温度、SOC(state

 

of
 

charge,SOC)或容量的残差,以残差作

为故障信号根据一定评估规则进行故障隔离与定

位[9-11] 。 例如文献[12]提出了一种基于模型的多故障诊

断方法,对电池组的传感器故障、连接故障和短路故障进

行诊断,该方法在模型残差评估部分利用累积和和样本

熵来区别短路和连接故障。 但是基于模型的方法对于不

同型号的电池需要辨识不同的电池模型参数,且如果阈

值设定不合适可能会导致误诊或漏诊的情况。 此外,基

于单个电池的模型用于电池组故障诊断中具有较大的不

确定性。
基于数据驱动的方法是根据传感器采集的数据进行

统计分析,或建立机器学习模型进行故障分类。 根据电

池发生故障时的信息熵或者相关系数与正常运行时的明

显变化,可利用信息熵或相关系数的方法进行故障诊

断[13-15] 。 例如文献[16] 提出了一种基于交叉电压测量

和统计学分析的的方法,将单个电池的电压反映在两个

电压表上,通过相关系数分析电池组电压传感器故障、连
接故障和短路故障。 基于机器学习的方法需要大量电池

数据作为训练样本,且在不同型号电池上需要训练不同

诊断模型。 例如文献[17-18]利用处理后的电压数据进

行聚类分析,从而得到异常电池单元。 文献[19]采用随

机森林分类器实时检测电池内部短路,该方法通过机械

滥用诱导内部短路,通过在电池端口上加外部电阻,生成

包含和不包含短路故障的训练特征集。 当前这些基于信

息熵和统计分析的故障诊断方法容易受到噪声和不一致

性的干扰,而基于机器学习的故障分类方法对数据的质

量和数量要求较高,且泛化能力差。
本研究针对目前锂离子电池系统短路故障诊断方法

存在的问题,提出了一种将统计分析与密度聚类相结合

的短路故障诊断方法。 该方法的核心思想是,首先通过

基于核密度估计( kernel
 

density
 

estimation,KDE) 的相对

熵和相关系数,从电池组的测量电压和温度数据中提取

故障信息;然后使用 DBSCAN 算法进行聚类分析,自动识

别短路电池。 最后通过仿真实验验证了该方法的诊断效

率和鲁棒性。 本文提出的方法优点在于:1)可以直接根

据传感器测量的电压和温度值实时提取信息和聚类分

析,无需大量故障数据训练模型和设置故障检测阈值;2)
结合相对熵及相关系数的故障信息提取,提高了诊断方

法在存在干扰和电池组不一致性条件下的能力;3)提出

的诊断方法具有轻量化的特点,具有在线部署的潜力,只
需微调诊断方法的参数即可适用于不同运行环境。

1　 电池组短路故障诊断方法

　 　 相对熵和相关系数方法在故障检测中被广泛使用,
在提取数据信息方面具有良好的效果。 由于电池组具有

不一致性,传统基于相对熵的诊断方法(采用直方图估计

的频率分布)容易出现误诊断,而相关系数能够较好的提

取故障信息。 但是,在测量噪声影响下,相关系数无法准

确提取电池组的故障信息。 因此,本文提出一种改进的

相对熵(核密度估计的频率分布)方法来减小提取故障

信息的干扰,同时结合相关系数进一步挖掘电池组的故

障信息。 此外,为了提高诊断效率,采用参考电池的方式

来计算相对熵和相关系数。 最后,为了避免故障阈值设
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置过大或过小引起的问题,本文采用一种基于聚类的分

析方法来自动识别和定位短路电池。
1. 1　 电池组故障信息提取

　 　 1)电池组相对熵

相对熵在信息论和数据挖掘领域中已经得到了广泛

的应用,相对熵(Kullback-Leibler,KL)散度是一种衡量两

个概率分布之间差异的方法[20] 。 对于离散随机变量 X =
(x1,x2,…,xn), 它的两个概率分布为 P(x) 和 Q(x),
满足:

∑P(x) = 1,∑Q(x) = 1 (1)

相对熵的计算公式如式(2)所示,其中 RE 表示概率

分布 P 对 Q的相对熵,相对熵越大,两个概率分布之间的

相似性越低。 而当两个分布完全相同时,则 RE 等于 0。

RE(P‖Q) = ∑P(x)log P(x)
Q(x)

(2)

为了在电池组中实时计算各电池的电压或温度相对

熵,采用基于滑动窗口的遗忘机制来达到获取每个采样

时刻的相对熵。 以电池组电压为例,在时间 t1 ~ t2 内的电

池组电压为:

U =

u1
1 u1

2 … u1
n

u2
1 u2

2 … u2
n

︙ ︙ u j
i ︙

um
1 um

2 … um
n

é

ë

ê
ê
ê
ê
êê

ù

û

ú
ú
ú
ú
úú

(3)

其中, n 表示电池组电池个数, m 为滑动窗口时间内

电压数据个数。 u j
i 是第 i 个电池在滑动窗口时间内第 j 个

电压数据。 可以得到矩阵的最大值 Umax 和最小值 Umin。

为了计算频率矩阵,首先定义次数矩阵 C :

C =

c1,1 c1,2 … c1,n

c2,1 c2,2 … c2,n

︙ ︙ cx,i ︙
ck,1 ck,2 … ck,n

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

(4)

其中, k 表示划分的区间个数。 需要说明的是, k 值

会影响计算结果的大小但基本不会影响相对熵的变化趋

势,本文选择 k 值为 10。 cx,i 表示在 t1 ~ t2 时间内,电池 i

的电 压 在 区 间 (Umin + (x - 1)
Umax - Umin

k
,Umin +

x
Umax - Umin

k
) 的次数,其中 x = 1,2,…,k。 至此可以得

到频率矩阵 P :

P =

p1,1 p1,2 … p1,n

p2,1 p2,2 … p2,n

︙ ︙ px,i ︙
pk,1 pk,2 … pk,n

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

,px,i =
cx,i

∑
k

x = 1
cx,i

(5)

矩阵 P 是通过平均划分区间来求频率分布,其计算

量小但在实际测试中的抗干扰能力有着较大缺陷,因此

改进为 KDE 方式计算概率分布,通常核函数选择高斯核

函数有着较好的效果。 考虑到相对熵的非负性,在确保

概率分布之和为 1 的同时,其具体的 KDE 估计如下式:

fh(x) = 1

N 2πh2
∑

N

i = 1
e

-(x-xi)
2

2h2 ,x ∈ R (6)

式中: N 是数据点个数, h 表示带宽。
2)电池组相关系数

在电池组故障诊断中,相关系数可以用于分析电池

单体之间的相关性,进而判断电池单体的健康状况。 常

见的相关系数分析方法包括如下几种:
(1)单体电压相关性分析:通过计算电池组中各个

单体之间的电压相关系数,可以判断电池单体之间的电

压偏差是否存在异常。 如果单体之间的电压相关性较

差,可能意味着电池单体之间存在电压异常或接触不良

等问题。
(2)单体温度相关性分析:通过计算电池组中各个

单体之间的温度相关系数,可以判断电池单体之间的温

度偏差是否存在异常。 如果单体之间的温度相关性较

差,可能意味着电池单体之间存在温度异常或传感器故

障等问题。
(3)电压和温度相关性分析:分别计算电池组中各

个单体之间电压的相关系数和温度的相关系数,可以综

合分析电池单体的健康状况。 如果两种相关系数较差,
可能意味着电池单体短路故障。

考虑到斯皮尔曼秩相关系数(Spearman)不需要数据

满足正态分布或线性关系等条件,因此适用于各种类型

的数据集。 此外,它还不受变量的度量尺度(连续或离

散)的限制,而且在处理异常值方面相对较为稳健。 本文

使使用 Spearman 相关系数作为故障信息提取的一种方

法。 对于两个变量 X = [X1,…,Xn] 和 Y = [Y1,…,Yn]
其计算公式可表示为:

ρ spearman =
∑

n

i = 1
(x i -x-)(y i -y-)

∑
n

i
(x i -x-)

2∑
n

i
(y i -y-)

2

(7)

式中: x i 和 y i 代表 X和 Y排序后的元素x- 和 y- 分别对应其

均值。
为了减小计算量,避免整个电池组中单体电池相互

计算相对熵或相关系数,本文选取测量电压为中值的电

池作为参考电池。 这个电池能够代表整个电池组的运行

状况。 因此根据滑动窗口,可以得到每一时刻的电池组

故障信息,表示为:
D1 = [ re1,mean … ren,mean] T (8)



· 96　　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 37 卷

D2 = [ρ 1,mean … ρ n,mean] T (9)

1. 2　 基于 DBSCAN 的电池组短路诊断策略

　 　 通过以上方法提取电池组电压和温度的相对熵和相

关系数,传统的方法是通过提前设定阈值来判断电池故

障。 但由于不同电池、不同老化状态、工况以及温度等条

件的影响,导致判断方式会存在误报或漏报的情况。 因

此本文采用 DBSCAN 算法对电池进行自动检测和故障定

位。 DBSCAN 算法是一种基于密度的空间聚类算法,该
方法可以根据数据点之间的距离对具有相似特征的数据

集进行分类,而不需要预先确定类别。 目前该算法已经

成功应用于锂离子电池故障诊断中[17-18] 。 本文采用

DBSCAN 算法,设置好 DBSCAN 算法的两个重要参数

(邻域半径 eps 和最小样本点 minPts)完成短路电池自动

识别。 对于给定样本集 D,DBSCAN 的进行短路检测的

实现过程可以归纳为算法 1。 DBSCAN 的核心思想是:从
任意核心对象出发,计算所有从该对象密度可达的样本,
将其作为同一类,直到所有样本均被计算,从而得到聚类

结果。 在异常检测的聚类结果中,通常会得到两类,即正

常点集合和异常点集合,对应本文故障诊断中的正常和

短路类型。 需要注意的时,DBSCAN 算法的计算量取决

于输入数据的规模和算法参数的设置。 对于每个数据

点,需要计算其邻域中的所有点,这意味着算法的时间复

杂度至少为 O(n2)。 然而,在实践中,由于 DBSCAN 算

法可以跳过噪声点, 因此算法的实际复杂度通常比

O(n2) 低。 对于不同电池组来说其单体电池数量不同,
可通过适当调整算法的参数来减小计算时间,从而达到

实时诊断的目的。
算法 1

 

DBSCAN 聚类分析流程

输入:数据集 D,半径参数 eps ,最小样本数 minPts
1.

 

初始化标记数组 visited_points(所有点都未被访问过的状态);
2.

 

初始化聚类计数器 cluster_id;
3.

 

在数据集 D 中对每个未被访问的点 p 执行以下操作:
　 　 a. 将 p 标记为 visited;
　 　 b. 找到 p 的 eps 邻域内的所有点集合 N;
　 　 c. 如果 N 的大小小于 minPts ,则将 p 标记为噪声点。 否则,

创建新的类 C,将 p 加入 C 中,并将所有在 N 中的点加入

C 中;
　 　 d. 递归地遍历 N 中的每个点,将其加入 C 中,并将其标记为

 

visited;
　 　 e. 设置聚类 C 的标识符,增加 cluster_id 的值;
4.

 

输出所有被标记为噪声点的数据点。

　 　 在本文提出的诊断方法中,首先根据相对熵和相关

系数提取故障信息,然后采用 DBSCAN 算法识别短路电

池,诊断流程如图 1 所示。

图 1　 短路故障诊断的框架图

Fig. 1　 Frame
 

diagram
 

of
 

short-circuit
 

fault
 

diagnosis

2　 仿真测试

2. 1　 仿真平台

　 　 实验平台为计算机( i5-10400,RX560,Windows11),
本文采用 AutoLion-ST 软件和 Simulink 进行仿真,前者用

于锂离子电池的电化学热耦合计算,后者用于电池离子

组的短路模拟以及数据的采集。 测试中所用锂离子电池

的结构和性能参数列于表 1。 有关 AutoLion-ST 电化学模

型的参数可参考文献[12,21-24],模型的准确性已通过

实验得到了验证。
图 2 展示了在环境温度为 25 ℃ (298. 15

 

K),负载工

况为 FUDS(federal
 

urban
 

driving
 

schedule)下 8 个电池单

体串联时的充放电仿真过程。 本文仿真中的电池组不一

致性设置为 3%。 为了模拟真实环境,在电压和温度测量
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　 　 　 　 表 1　 三元锂离子电池参数

Table
 

1　 Ternary
 

lithium
 

battery
 

parameters
参数 值

正极材料 三元锂离子电池(NCM111)
负极材料 石墨

直径×高度 / mm 18. 6×65. 2
重量 / g 43. 39

额定容量 / Ah 2. 15@ 1C
额定电压 / V 3. 65

充电截至电压 / V 4. 2
放电截止电压 / V 2. 5

数据上分别添加标准差为 3 mV 和 0. 03 ℃ 的高斯白噪

声。 此外为了对提出的短路诊断方法进行验证,本文基

于该仿真平台分别进行 1、5 和 10
 

Ω 的短路测试,短路电

池的编号为 5 号,3 种短路情况均在 4
 

000 s 时触发。 所

有测试环境均为 25 ℃ ,采样时间为 1
 

s。
2. 2　 滑动窗口影响

　 　 故障诊断的效果需要综合准确性和效率进行考虑,
其中滑动窗口大小对提出的方法影响较大。 以正常运行

时电池 5 为例,图 3 是不同窗口大小计算得到的最大相

　 　 　 　

图 2　 电池仿真测试平台示意图

Fig. 2　 Schematic
 

diagram
 

of
 

battery
 

simulation
 

test
 

platform

对熵值 ReRE _ MAX, 以及每一步计算所消耗的时间

Time。 滑动窗口过小会造成信息波动过大,不利于信息

的提取,而窗口过大会造成较大的资源浪费。 对于相关

系数的滑动窗口选择也是作类似的选择,通过试验试错

本文选择滑动窗口长度为 150。
此外, eps 和 minPts 参数的选择需要根据具体的数

据集来确定。 当 eps 取值过小时,很多数据点可能会被

认为是噪声点而被排除在聚类之外,即容易造成误诊;而
当 eps取值过大时,则会将很多不相关的数据点合并到同

一簇中,导致聚类效果不佳,即容易造成漏诊。 而 minPts
也具有类似的影响,因此,本文是基于正常电池与短路电

池在提取故障信息(相对熵和相关系数)后的最大距离

进行选择,本文分别取 eps = 0. 5, minPts = 4。

图 3　 滑动窗口对相对熵和计算时间的影响

Fig. 3　 Influence
 

of
 

sliding
 

window
 

on
 

relative
entropy

 

and
 

calculation
 

time
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3　 故障诊断结果

3. 1　 鲁棒性分析

　 　 本节分析了相对熵和相关系数在不同情形下的提取

故障信息的效果,下面以电压为例分析相对熵和相关系

数。 图 4 为正常运行时对电池 5 施加干扰时绘制的曲

线,其中噪声在 2
 

500
 

s 时加入,持续 500
 

s。 可以看出由

KDE 估计的相对熵在干扰下的波动和由原始不一致性

造成的波动区别很小,而普通相对熵在整个时间段的波

动剧烈。 由相关系数计算得到故障信息非常容易受到噪

声的干扰,表现出相关度大幅下降。
当电池组的不一致性提升到 6%后,无故障时绘制的

3 种曲线如图 4 所示。 两种相对熵都对电池组不一致性

敏感,其值出现了较大的变化,而相关系数在整体上可以

看出对不一致性具有较好的抑制作用。 因此本文最终选

择 KDE 估计的相对熵和相关系数提取电池组的故障信

息,以此作为聚类分析的特征输入。 需要说明的是,电池

组在实际使用时的不一致性通常不会过大,当一致性成

为电池组故障问题时,需要由 BMS 的均衡进行管理。

图 4　 噪声和不一致性对相对熵和相关系数的影响

Fig. 4　 Influence
 

of
 

noise
 

and
 

inconsistency
 

on
 

relative
 

entropy
 

and
 

correlation
 

coefficient

　 　 图 5 是在加入噪声后短路时的聚类结果图,提出的

方法在 2
 

500 ~ 3
 

000 s 并未将电池 5 误诊为短路电池。
而在 4

 

000 s 时并联电阻后,提出的方法在短路后 211 s
检测到电池 5 发生短路。 当有持续的噪声干扰时,通过

对诊断方法的微调(例如 eps、minPts以及判定规则)可以

将持续大的干扰检测为传感器异常。
3. 2　 不同程度短路诊断结果

　 　 图 6 是 1
 

Ω 短路时的串联电池组的各电池电压和温

度曲线,以及通过相对熵和相关系数提取的故障信息。
图 7 是每个采样点的聚类结果。 可以看出对于 1

 

Ω 短路

而言,电池的电压和温度变化明显,对于多数方法能够有

效检测。 在不一致性和噪声干扰下,基于 KDE 的相对熵

能够在 10
 

s 内捕捉到电池 5 的故障特性。 而温度的相对

熵需要较长时间检测,这是因为电池的热特性不具有和

图 5　 噪声下短路 5
 

Ω 的诊断结果

Fig. 5　 Diagnosis
 

results
 

of
 

short
 

circuit
 

5
 

Ω
 

under
 

noise

电压一样的瞬时变化,但后续能够以较大的值区分其他

电池。 相关系数与相对熵在电压和温度方面具有类似的

现象,即检测到短路时温度的变化总是要比电压慢。 综

合聚类分析结果,提出的诊断方法能够快速定位短路电
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池。 图 8 是短路 10
 

Ω 的故障信息提取结果,图 9 是聚类

分析结果。 从图中可以看到,由于短路相对较轻,电池的

短路故障特征在前期并不明显,仅仅根据相关系数和阈

值的方式很容易造成漏诊和误诊。 这是由于在短路前

期,测量噪声和不一致性的干扰容易掩盖短路时的电压

和温度。

图 6　 1
 

Ω 短路时电压和温度故障信息提取结果

Fig. 6　 Extraction
 

results
 

of
 

voltage
 

and
 

temperature
 

fault
 

information
 

in
 

1
 

Ω
 

short
 

circuit

图 7　 1
 

Ω 短路时的聚类结果

Fig. 7　 Clustering
 

results
 

of
 

1
 

Ω
 

short
 

circuit

　 　 表 2 是 3 种故障的检测结果,提出的方法均能够有

效定位短路电池。 表中 Td 表示故障发生到检测到的时

间, Δt 表示检测方法在每个采样点间消耗的计算时间。
可以看到,短路程度越深其检测时间越短,从电压和温度

的故障信息提取能看出相对熵和相关系数可以将这种信

息不同程度的放大。 此外,提出的方法在所使用的平台

上的计算时间基本保持在 0. 055
 

s,均小于采样时间,说
明本文提出的方法具有在线应用的潜力。

3. 3　 对比分析结果

　 　 对于短路故障诊断,可以将其看作二分类问题,即正

表 2　 3 种短路情况下的诊断结果

Table
 

2　 Diagnostic
 

results
 

under
 

three
short-circuit

 

conditions
短路阻值 / Ω 定位故障电池 Td / s Δt / s

1 是(Cell5) 36 0. 053
 

2
5 是(Cell5) 211 0. 056

 

2
10 是(Cell5) 552 0. 055

 

3

常和故障两类,本文引入混淆矩阵如表 3 所示。 为了对

比不同方法的效果, 选用准确率 ( Accuracy)、 精确率

(Precision)、召回率(Recall)和 F1score 作为对比指标,其
计算如下:

Accuracy = TP + TN
TP + TN + FP + FN

Precision = TP
TP + FP

Recall = TP
TP + FN

F1score = 2 × TP
2 × TP + FP + FN

ì

î

í

ï
ï
ï
ï
ï

ï
ï
ï
ïï

(10)
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图 8　 10
 

Ω 短路时电压和温度故障信息提取结果

Fig. 8　 Extraction
 

results
 

of
 

voltage
 

and
 

temperature
 

fault
 

information
 

in
 

10
 

Ω
 

short
 

circuit

图 9　 10
 

Ω 短路时的聚类结果

Fig. 9　 Clustering
 

results
 

of
 

10
 

Ω
 

short
 

circuit

表 3　 混淆矩阵

Table
 

3　 Confusion
 

matrix
预测正类 预测反类

真实正类 TP FN
真实反类 FP TN

　 　 熵、相关系数和 DBSCAN 是目前短路故障诊断中常

用的基于非模型的故障诊断方法[14,17-18,25-27] ,而基于参数

或状态估计得到残差,然后根据残差阈值进行故障诊断

是基于模型的常用方法。 为了突出聚类方法在避免诊断

时设置阈值问题的优势,采用基于模型残差的方法进行

对比。 在 3. 1 节已经分析了 KDE 方法相比传统方法的

相对熵,在抗干扰上的优势,本小节对比了仅采用 KDE

的相对熵进行诊断的结果。 为了体现本文提出的方法中

两种故障信息提取的优势,还对比了直接根据测量电压

和温度进行诊断的结果。 在相同工况短路下与 3 种方法

进行了对比,表 4 是 3 种短路情况下的不同方法的检测

结果,可以看出对比的 3 种方法在电池组正常运行期间

均未出现误报,即召回率为 1。 表中 ReRE+CC+DBSCAN
表示本文提出的方法,利用相对熵和相关系数提取故障

信息,然后采用 DBSCAN 判断故障电池。 V+T+DBSCAN
表示直接使用原始数据进行聚类分析的结果,可以看到

其计算时间更少。 从结果可以看出只有在 1
 

Ω 短路时其

效果稍好于本文的方法,当短路阻值增大时,其性能出现

明显下降。 这是因为 1
 

Ω 时,电压和温度会出现剧烈变

化,而短路电阻减小,仅仅依靠测量值难以及时发现故障

信息,例如在 10
 

Ω 短路后的 300
 

s 内,电池组的最小电压

和温度与中值的差值仅为 0. 032
 

V 和 0. 034 ℃ 。
ShannonRE(KDE)表示通过核密度估计概率分布改

进香农熵的诊断方法,香农熵如式(11)所示。 在确保式

中概率分布之和为 1 时,其概率分布由式(6)计算得到。
图 10 是在 5

 

Ω 短路下的电池组电压和温度的香农熵。 通

过电压的香农熵检测,在电池组充放电前期时短路的效果

并不明显,只有当短路持续到 SOC 值较小时,这种故障信

息才能被较好检测到。 因此通过香农熵来检测短路故障

效果并不好,且随着短路阻值增大,诊断效果逐渐变差。
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表 4　 3 种短路情况下各种方法的对比结果

Table
 

4　 Comparison
 

results
 

of
 

different
 

methods
 

under
 

three
 

short-circuit
 

conditions
短路阻值 / Ω 诊断方法 Td / s Δt / s Accuracy Precision Recall F1score

1

ReRE+CC+DBSCAN 36 0. 053
 

2 0. 992
 

8 0. 991
 

1 1 0. 995
 

5
V+T+DBSCAN 33 0. 003

 

6 0. 993
 

4 0. 991
 

8 1 0. 995
 

9
ShannonRE(KDE) 60 0. 029

 

7 0. 988
 

1 0. 985
 

2 1 0. 992
 

6
FFRLS-EKF 98 0. 000

 

4 0. 980
 

5 0. 976
 

1 1 0. 987
 

9

5

Re+CC+DBSCAN 211 0. 056
 

2 0. 970
 

1 0. 949
 

9 1 0. 974
 

3
V+T+DBSCAN 654 0. 003

 

8 0. 906
 

1 0. 858
 

0 1 0. 923
 

5
ShannonRE(KDE) 778 0. 029

 

8 0. 889
 

7 0. 837
 

2 1 0. 911
 

4
FFRLS-EKF 710 0. 000

 

4 0. 899
 

3 0. 849
 

3 1 0. 918
 

5

10

Re+CC+DBSCAN 552 0. 055
 

3 0. 921
 

7 0. 878
 

7 1 0. 935
 

5
V+T+DBSCAN 1030 0. 003

 

8 0. 852
 

5 0. 776
 

7 1 0. 874
 

3
ShannonRE(KDE) 2287 0. 029

 

0 0. 706
 

8 0. 636
 

2 1 0. 777
 

7
FFRLS-EKF 1143 0. 000

 

4 0. 853
 

5 0. 777
 

8 1 0. 875
 

0

　 　 ShannonRE(X) = - ∑
n

i
p(x i)logp(x i) (11)

图 10　 KDE 估计的香农熵

Fig. 10　 Shannon
 

entropy
 

estimated
 

by
 

KDE

FFRLS-EKF 是基于模型的故障诊断方法。 本文使

用带遗忘因子的最小二乘法辨识参考电池的二阶等效电

路模型参数作为单体电池模型的参数。 通过扩展卡尔曼

滤波实时估计各电池电压,并通过与测量值的残差来判

断是否发生故障。 需要说明的是,实际中检测短路故障

通常需要与温度结合进行判断。 电池模型的 OCV-SOC
特性曲线通过 12 阶多项式拟合,系数列于表 5,拟合误差

为 0. 002。 图 11 是 5
 

Ω 短路下的单体电池 SOC 估计和

端电压的残差。 通过表 4 可以看出这种方法在计算时间

上非常有优势,但故障诊断准确性并不高。 综合对比分

析,本文提出的方法在 3 种短路情况下均有较好的效果,
且随着短路阻值的增加,在检测时间和准确性上更具有

优势。

表 5　 OCV-SOC 曲线 12 阶多项式拟合系数

Table
 

5　 Fitting
 

coefficient
 

of
 

12th-order
polynomial

 

of
 

OCV-SOC
 

curve

参数 值

a1 -3. 185
 

78×104

a2 2. 027
 

288×105

a3 -5. 707
 

54×105

a4 9. 364
 

46×105

a5 -9. 928
 

71×105

a6 7. 130
 

11×105

a7 -3. 534
 

65×105

a8 1. 209
 

55×105

a9 -2. 806
 

86×104

a10 4. 248
 

67×103

a11 3. 926
 

54×102

a12 2. 071
 

05×101

a13 2. 936
 

27

4　 结　 论

　 　 本文提出了一种基于统计分析和密度聚类的电池组

短路故障诊断方法。 该方法通过遗忘机制,在电池组的

电压和温度中计算核密度估计的相对熵和相关系数,并
将其作为故障特征信息。 然后采用基于密度的空间聚类

算法(DBSCAN)自动识别短路故障电池。 通过仿真实验

对比分析,该方法具有较高的鲁棒性和准确性。 在阻值

较大的短路情况下具有更高的准确率。 该方法不需要大

量故障数据训练模型和设置故障检测阈值,具有轻量化
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图 11　 FFRLS-EKF 估计的结果

Fig. 11　 Results
 

of
 

FFRLS-EKF
 

estimation

的特点,具有在线部署的潜力,只需微调诊断方法的参数

即可适应不同环境。 综上所述,本文提出的短路故障诊

断方法具有实际应用的潜力,可以有效检测和定位短路

电池,并且故障越严重,诊断所需时间越短。 将来会在更

大电池数量上改进提出的方法,并在实车上验证并完善

本文提出的方法。
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