
第 37 卷　 第 5 期

· 36　　　 ·
电子测量与仪器学报

JOURNAL
 

OF
 

ELECTRONIC
 

MEASUREMENT
 

AND
 

INSTRUMENTATION
Vol. 37　 No. 5

2023 年 5 月

收稿日期:
 

2022-10-22　 　 Received
 

Date:
 

2022-10-22
∗基金项目: 国家自然科学基金项目 ( 12005030)、 重庆市自然科学基金 ( cstc2021jcyj-bsh0252)、 磁约束聚变安徽省实验室开放基金

(2021AMF01004)项目资助

DOI:
 

10. 13382 / j. jemi. B2205935

基于 YOLOv5-EA-FPNs 的芯片缺陷检测方法研究∗
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摘　 要:针对芯片缺陷检测中,缺陷尺寸跨度大、特征相似、小目标难识别、漏检等问题,本文提出基于 YOLOv5 改进的缺陷检测

方法。 针对小目标缺陷检测中出现的漏检、误检等问题,提出新增小目标特征检测器(small
 

target
 

feature
 

detector,
 

S-Detector),
提升模型对小目标缺陷的学习能力;针对缺陷尺寸跨度大、特征相似等问题,提出具有高效聚焦学习能力的特征金字塔结构

(efficient
 

attention
 

feature
 

pyramid
 

networks,
 

EA-FPNs),提升模型对不同尺寸缺陷的检测能力;针对预测阶段冗余框较多导致时

间开销大的问题,提出基于面积的边界框融合算法(bounding
 

box
 

fusion
 

algorithm,
 

BFA),减少冗余框。 实验结果表明,本文方法

相较于改进前,检测精确度提升 1. 2%,小目标缺陷精确度提升 1. 6%;采用 BFA 消除冗余框的同时,平均检测时长为 26. 8
 

μs /
张,较使用 BFA 前减少了 5. 2

 

μs。 本文所提方法具有良好性能,能够提升检测效率。
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Abstract:
 

To
 

address
 

the
 

problems
 

of
 

large
 

defect
 

size
 

span,
 

similar
 

characteristics,
 

difficulty
 

in
 

recognition
 

of
 

small
 

targets,
 

and
 

missed
 

objects
 

in
 

chip
 

defect
 

detection,
 

an
 

improved
 

method
 

based
 

on
 

YOLOv5
 

is
 

proposed.
 

To
 

solve
 

missed
 

and
 

false
 

detection
 

of
 

small
 

targets,
 

we
 

presented
 

a
 

new
 

small
 

target
 

feature
 

detector
 

( S-Detector)
 

to
 

improve
 

the
 

learning
 

capability
 

of
 

the
 

model.
 

For
 

the
 

large
 

defect
 

size
 

span
 

and
 

similar
 

characteristics,
 

efficient
 

attention
 

feature
 

pyramid
 

networks
 

( EA-FPNs)
 

with
 

highly
 

active
 

focus
 

learning
 

ability
 

are
 

proposed
 

to
 

improve
 

the
 

ability
 

to
 

detect
 

different
 

sizes
 

of
 

defects.
 

The
 

bounding
 

box
 

fusion
 

algorithm
 

(BFA)
 

is
 

developed
 

to
 

reduce
 

the
 

redundant
 

boxes
 

and
 

time
 

overhead
 

in
 

prediction.
 

The
 

experimental
 

results
 

show
 

that
 

the
 

detection
 

accuracy
 

of
 

this
 

method
 

is
 

enhanced
 

by
 

1. 2%
 

and
 

the
 

accuracy
 

of
 

minor
 

target
 

defects
 

is
 

improved
 

by
 

1. 6%;
 

while
 

using
 

BFA
 

to
 

eliminate
 

the
 

redundant
 

boxes,
 

the
 

detection
 

time
 

of
 

a
 

single
 

image
 

is
 

26. 8
 

μs,
 

which
 

is
 

decreased
 

by
 

5. 2
 

μs
 

before
 

BFA.
 

The
 

proposed
 

method
 

has
 

good
 

performance
 

and
 

efficiency
 

in
 

chip
 

defect
 

detection.
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0　 引　 言

　 　 半导体芯片在制造流程各个环节都有可能出现表面

缺陷,有效的缺陷检测方法是提高芯片制造良率的关键。
传统的芯片缺陷检测方法大多是人工或机器视觉检测

法。 人工检测法效率、精度相对较低,易受到主观因素影

响,检测效率无法满足生产需求;机器视觉检测法基于光

学原 理, 利 用 自 动 光 学 检 测 设 备 ( automatic
 

optic
 

inspection,
 

AOI)完成检测,该方法相较于传统人工检测

更加灵活、快速、效率更高。 然而,传统机器视觉检测法

基于手工特征,需要从业人员具有丰富的专业知识,且该
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方法容易受到光线等物理因素的影响,导致检测出现误

判、漏检等问题。
随着第一个深度卷积神经网络( convolutional

 

neural
 

networks,
 

CNN)模型的提出,基于深度学习的缺陷检测

技术逐渐在工业检测上得到应用,如 Park 等[1] 利用 CNN
实现表面缺陷的端到端检测,避免人工设计特征,降低了

人为因素对缺陷特征的影响。 目前基于 CNN 的陷检测

算法分为两类:一阶段算法,模型训练速度快,实时性强,
但精准度欠佳,其代表算法有 YOLO( you

 

only
 

look
 

once,
 

YOLO) 系 列[2-4] 、 SSD[5] ( single
 

shot
 

detector,
 

SSD )、
RetinaNet[6] 等;二阶段算法,在检测精准度上要强于一阶

段算法,但模型实时性较弱,代表算法有区域卷积神经网

络[7](region-based
 

convolutional
 

neural
 

network,
 

R-CNN)、
Fast

 

R-CNN[8] 、 Faster
 

R-CNN[9] 、 Mask
 

R-CNN[10] 等。 芯

片缺陷特征相似、尺寸跨度大、小目标难检测而导致的误

检、漏检等一直是困扰技术人员的难题,前人对上述问题

进行了研究,如 Li 等[11] 提出一种基于卷积神经网络的微

小缺陷检测方法,采用从粗到细两阶段的 CNN 框架去提

升模型对微小缺陷的识别能力,但忽略了尺寸跨度大、特
征相似等问题;Cao 等[12] 提出的注意力引导结构,能够提

升大目标特征图的学习能力,从而降低尺寸跨度大带来

的问题,由于该方法只针对大目标,对小目标的识别起到

了负面作用。 研究人员只专注于解决针对芯片缺陷检测

中的单一问题,如小目标缺陷漏检或尺寸跨度大、特征相

似而造成的漏检、误检,并未给出较为全面的解决方案,
本文针对芯片表面缺陷检测过程中存在的缺陷尺寸差距

大、特征相似、小目标检测效果差等问题进行综合考虑,
兼顾检测实时性,提出基于 YOLOv5 的改进方法。 本文

的主要贡献如下:
1)

 

针对芯片缺陷尺寸变化大、相似特征等问题,本
文提出了 EA-FPNs 结构,该结构能够聚合多尺度上下文

信息,聚焦缺陷特征,以缓解不同尺度缺陷的误检、漏检

等问题。 进一步的,针对小目标难检测的情况,本文通过

新增一层 S-Detector, 加强 EA-FPNs 对小目标的识别

能力。
2)

 

针对推理结果中存在较多冗余框导致时间开销

大的问题,本文提出了 BFA,该算法基于面积权重占比消

除冗余框,获得更加准确的检测结果。

1　 相关工作

　 　 随着计算成像、计算机和大数据人工智能等相关领

域的快速发展,一些基于统计、滤波器等机器视觉方法被

应用到芯片缺陷检测。 曹新容等[13] 利用匹配滤波克服

了背景干扰,消除了噪声影响,使检测图像达到了灰度平

衡;朱刘盅等[14] 提出基于缺陷纹理匹配 Gabor 滤波器,该

方法使用滤波器来消除背景纹理的影响,突出缺陷纹理,
抑制背景纹理,从而获得良好的精度和检测速度。 巢

渊[15] 利用 SVM-RFE 算法对芯片缺陷特征进行处理,消
除无关集冗余特征,获得缺陷样本最优子集;陶志勇

等[16] 利用 PSO_SVM 算法对电池板裂缝缺陷检测,这两

类方法对形态特征相似的缺陷处理效率较低,处理方式

相对繁琐。 传统机器视觉技术的准确性并不高,虽有一

系列高性能算法不断出现,如 Ou 等[17] 采用霍夫线对二

值分割芯片缺陷图像中的像素点坐标进行检测,但在实

际应用中效果欠佳。
与传统的机器学习缺陷检测方法相比,CNN 可以自

主学习输入图像的特征,如周天宇等[18] 利用 YOLOv3 算

法检测载波芯片,提出了 4 种不同尺度的特征图,并通过

增强融合特征的方式来改进多尺度检测;向宽等[19] 提出

了基于 Faster
 

R-CNN 模型,利用 FPNs 融合多个不同深

度特征图,使高级特征图保留了低维度特征,从而提升检

测效果;Wen 等[20] 提出基于 CNN 的晶圆半导体表面缺

陷检测方法,采用了无性卷积特征金字塔结构来提取特

征,并生成特征映射,再将生成的特征图传入区域建议网

络,生成建议区域,最后在进行分类和回归。 上述基于

CNN 的缺陷检测方法能够有效提取缺陷特征,缓解尺度

变化大出现检测效果差的问题,但周天宇等提出的方

法只是针对轻量级数据检测,对特征复杂的缺陷检测

效果不佳;向宽、Wen 等提出的方法在建议网络中需要

进行二次学习,在时效性方面存在一定弊端。 上述方

法虽对芯片检测中遇到的问题提出了解决方案,但多

数研究只针对单一问题,如小目标缺陷漏检或尺寸跨

度大、特征相似等,无法适用于本文复杂的检测场景。
基于以上考虑,本文提出基于改进的 YOLOv5 芯片表面

缺陷检测方法。

2　 本文工作

　 　 本文针对芯片缺陷尺寸跨度大、特征相似、小目标难

检测等问题,对 YOLOv5 网络结构做出了两点改进:1)
 

针对小目标检测存在漏检等问题,新增更大尺寸特征检

测器;2)
 

针对缺陷尺寸跨度大、特征相似,提出 EA-FPNs
结构。 图 1 为模型整体框架,首先对输入网络的图像尺

寸进行预处理( Data
 

Preprocessing),包括离线数据增强、
调整图像尺寸大小为 640 × 640;将预处理图像输入 EA-
FPNs 结构,通过骨干网络( Backbone) 提取网络特征,再
将获取的特征图进行特征融合。 其中,为了增强模型对

小目标的检测能力,本文新增了 S-Detector,该检测器拥

有更大尺寸的特征图结构,且结合注意力模块( attention
 

module,
 

AM),能够提升模型对小目标的学习能力。 在

推理阶段,由于非极大抑制( non-maximum
 

suppression,
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NMS) [21] 算法过滤预测框后仍存在少量冗余框,影响检

测效果,为此,本文提出了 BFA,该算法以预测框面积占

比为权重,将冗余框进行融合,最终呈现出最合理的预测

效果。 下面详细介绍以上改进的内容。

图 1　 改进的 YOLOv5 网络结构

Fig. 1　 The
 

Improved
 

network
 

structure
 

of
 

YOLOv5

2. 1　 模型结构改进设计

　 　 由于在检测过程中,芯片缺陷存在尺寸跨度大、特征

相似、小目标难检测等问题,本文在 YOLOv5 结构基础

上,提出了 EA-FPNs 结构,缓解缺陷尺寸差异大而带来

的定位不准问题;在 EA-FPNs 的基础上新增加一层 S-
Detector,该结构拥有更大尺寸的特征检测器,能够提供

更多的空间信息,从而对小目标缺陷的学习能力。 下面

介绍二者改进的内容。
1)S-Detector 结构介绍

图 2 为芯片缺陷尺寸分布和占比情况,(a)为芯片尺

寸分布情况,( b) 为芯片缺陷尺寸占比情况。 以 COCO
标准中对小目标(小于 32×32 像素)、中目标(32×32 到

96×96 像素)、大目标(大于 96×96 像素)的定义,缺陷尺

寸主要集中在中、小目标,共占比 66%,其中,小目标占

比 16%。
由于在检测过程对小目标缺陷识别效果较差,本文

在 YOLOv5 结构的基础上新增一层 S-Detector,其结构如

图 3 所示。 S-Detector 由两个分支构成:一个分支通过常

规 CNN 提取特征检测器中小目标的纹理信息,该分支输

入输出的特征检测器通道数保持不变;另一个分支将

AM 融入特征检测器中,首先将特征检测器通过 1 维卷积

进行通道数降维,再通过平均池化层提取其中的空间、背
景信息,这些信息能够加强模型对小目标缺陷的检测能

力,此时特征检测器会被压缩成 1 维通道,最后将 1 维检

测器进行通道扩充后,与另外一个分支的检测器进行融

　 　 　 　 　

图 2　 缺陷尺寸分布和占比情况

Fig. 2　 The
 

distribution
 

and
 

percentage
 

of
 

defect
 

size
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图 3　 S-Detector 结构

Fig. 3　 The
 

structure
 

of
 

the
 

S-Detector

合,生成最终的 S-Detector。 通过上述方式可以加强 S-
Detector 对小目标缺陷的检测能力。

2)EA-FPNs 结构介绍

由于不同网络深度对目标特征的学习能力不同,浅
层网络注重学习空间、背景等信息,对小目标更敏感;深
层网络注重学习目标特征、纹理等信息,对尺寸较大目标

的学习能力更强。 FPN 以多尺度融合的方式,融合不同

网络深度的特征信息,进而加强模型的对不同尺度目标

的学习能力。 芯片表面缺陷存在尺寸大小分布较广、跨
度较大,在检测过程中易造成定位不准确、漏检等问题,
为此,本文在新增 S-Detector 的基础上,对 FPN 结构进行

改进,提出 EA-FPNs 结构。 图 1 中,以 Darknet53 作为

EA-FPNs 的主干网络,划分为 5 层结构,每层负责不同尺

寸缺陷特征的学习。 将 5 种不同尺寸特征检测器上采样

(Upsample)后进行融合,在融合阶段针对不同特征检测

器添加 AM。 经过 EA-FPNs 融合后生成 4 种不同尺寸的

特征检测器,尺寸分别为 20 × 20、40 × 40、80 × 80、160 ×
160,前两个检测器负责检测大、中尺寸目标,后两个检测

器负责检测小尺寸目标。 通过 EA-FPNs 可以聚合不同

层次特征图的特征信息,从而减缓缺陷尺寸跨度大带来

的检测问题。
2. 2　 BFA 设计

　 　 模型在预测阶段会进行 NMS 过滤多余的预测框,经
过多次实验发现,在 NMS 后仍然存在部分冗余框,为进

一步加强过滤作用,本文提出了 BFA,该算法流程如算法

1 所示。
　 　 BFA 是基于面积占比权重的融合算法,首先计算所

有冗余框的面积,并获取面积最大的冗余框 S,同时保留

冗余框中置信度最大值;将 S 与其余冗余框作交并比[22]

(intersection
 

over
 

union,
 

IOU)计算;将高于阈值的冗余框

与 S 进行融合即可获得最终的预测框,融合公式如下:

算法 1BFA 流程

开始

输入:冗余框集合 A1 = {b1 ,b2 ,…,bm};
筛选冗余框阈值 T;
冗余框面积集合 S1 = { s1 ,s2 ,…,sm};

融合框 B1;
1.

 

for
 

i= 1,2,…,m
 

in
 

A1
计算 A1 中冗余框面积,存放在 S1 中,并按降序排序;获取置

信度最大值 Scores;
2.

 

for
 

j= 1,2,…,m
 

in
 

S1
计算最大面积预测框 S j 与其余预测框做 IOU 计算,统计大于 T 的

预测框下标集合 A2
3.

 

for
 

k= 1,2,…,in
 

len(A2)
将面积最大预测框 s1 与 A2k 进行融合

4. 将 Score 赋值给融合之后的预测框。
结束

　 　 Cx1
=
Ax1

× Aarea + Bx1
× Barea

Aarea + Barea
(1)

Cx2
=
Ax2

× Aarea + Bx2
× Barea

Aarea + Barea
(2)

Cy1
=
Ay1

× Aarea + By1
× Barea

Aarea + Barea
(3)

Cy2
=
Ay2

× Aarea + By2
× Barea

Aarea + Barea
(4)

其中,Cx1、Cy1、Cx2、Cy2 表示边界框的下标,A、B 表示

进行融合的冗余框,Aarea 、Barea 分别表示冗余框的面积。
相比以置信度为权重进行融合的方法,以面积占比为权

重的融合方式避免了出现融合框定位不准的情况。

3　 实验与结果分析

　 　 在本节中详细介绍数据集制作过程、实验过程、以及

实验结果和总结,详细说明如下。
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3. 1　 数据集准备

　 　 本文数据集来自生产线,共 8
 

818 张,图像大小为

888×888,训练集、验证集、测试集按 VOC 数据集标准

3 ∶ 1 ∶ 1 进行划分,通过 LabelImg 标准工具进行类别、边

界框标注。 数据集共包含 12 个类别,详情如图 4 所示,
其中包括:变色、多边少边、裂片、崩边、多金、金疙瘩、图
层不全、桥压、划伤、脏污、栅条缺损、钻蚀,数据集类别划

分情况如表 1 所示。

表 1　 数据集类别划分情况

Table
 

1　 The
 

classification
 

of
 

data
 

sets
第 1 类 第 2 类 第 3 类 第 4 类 第 5 类 第 6 类 第 7 类 第 8 类 第 9 类 第 10 类 第 11 类 第 12 类

变色 多边少边 裂边 崩边 多金 金疙瘩 图层不全 桥压 划伤 脏污 栅条缺损 钻蚀

图 4　 缺陷类别展示

Fig. 4　 The
 

display
 

of
 

defects
 

category

3. 2　 实验准备

　 　 1)
 

实验环境。 本文以 PyTorch 作为网络结构和模型

训练的框架,实验硬件环境如下:NVIDIA
 

RTX
 

A6000 显

卡,显存为 48
 

GB;CPU 为 Intel ( R)
 

Xeon ( R) W-2223,
64 位操作系统;实验参数如下:训练的图像批处理设置

为 bit;共进行 150 次网络训练,学习率为 0. 001。
2)

 

数据增强。 缺陷类别分布存在不均匀的情况,将
导致实验出现严重过拟合,从而无法进行后续实验。 图

5 为数据增强前,各类别标签数量及训练的 AP 情况。 由

图可知,不同种类缺陷数量严重不平衡,其中第 3、6、12
类缺陷数量太少,第 10 类缺陷数量大多,因此在实验前

采用离线数据增强扩充缺陷数量较少的类别,以此维持

训练数据集缺陷种类平衡。 增强方式以不改变缺陷原特

征,维持数据集比例 3 ∶ 1 ∶ 1 为前提,包括:水平翻转、垂
直翻转、平移、转置。 图 1 中数据预处理模块为数据增强

样例。 经过数据增强扩充较少的缺陷数量后,得到训练

集 5
 

005 张、验证集 1
 

891 张、测试集 1
 

922 张。
3)

 

评估指标。 实验评估指标采用精确度( precision,
 

P)、 召 回 率 ( recall,
 

R )、 各 类 别 平 均 精 度 ( average
 

precision,
 

AP )、mAP @ 0. 5、mAP @ . 5:. 95 作为评估指

标,小目标缺陷的检测性能使用 APsmall 、APmiddle 、AP large 和

ARsmall 、ARmiddle 、AR large 。
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图 5　 数据增强前各类别类数量和 AP 情况

Fig. 5　 The
 

number
 

of
 

each
 

category
 

and
AP

 

before
 

data
 

enhancement

AP、AR 表示某一缺陷的平均 P 值,平均 R 值,公式

如下:

AP = ∫1

0
P(x)dx,P = TP

TP + FP
(5)

AR = ∫1

0
R(x)dx,R = TP

TP + FN
(6)

　 　 其中,TP 表示真实为正样本,检测为正样本;FP 表

示真实为负样本,检测为正样本;FN 表示真实为正样本,
检测为负样本;P 表示真实为正样本,且检测为正样本的

检测比率;R 表示正确预测缺陷的比率。
mAP@ 0. 5 表示 IOU 阈值为 0. 5 时,总类别的平均

精度,公式如下:

mAP = 1
C ∑

C

j
AP j (7)

其中,C 表示总类别数,j 表示类别。
mAP @ . 5:. 95 表示 IOU 阈值以 0. 05 为间隔,从

0. 5 ~ 0. 95 的平均精度;APsmall 、APmiddle 、AP large 和 ARsmall 、
ARmiddle 、AR large 表示小、 中、 大目标的平均 P 值和平均

R 值。
3. 3　 实验结果展示与分析

　 　 1)不同模型结果对比

为进一步验证本文方法的有效性,将本文模型与常

见的 缺 陷 检 测 模 型 Faster
 

R-CNN、 YOLOv3, 以 及

YOLOv5-M、YOLOv5-L、YOLOv5-X 在相同数据集上进行

对比实验,实验结果如表 2、3 所示,其中 Layers 表示网络

层数,Params 表示网络参数量。

表 2　 不同模型结果对比

Table
 

2　 The
 

comparison
 

of
 

results
 

with
 

different
 

models
模型 Backbone Size Layers Params / M mAP@ 0. 5 mAP@ . 5:. 95

Faster
 

R-CNN Resnet101 608×608 599 101. 2 71. 9% 36. 4%
YOLOv3 Darknet-53 640×640 261 61. 5 75. 2% 38. 7%

YOLOv5-EA-FPNs Darknet-53 640×640 576 86. 2 79. 4% 44. 1%

表 3　 不同网络深度结果对比

Table
 

3　 The
 

comparison
 

of
 

results
 

with
 

different
 

network
 

depths
模型 Backbone Size Layers Params / M mAP@ 0. 5 mAP@ . 5:. 95

YOLOv5-M Darknet-53 640×640 369 20. 9 76. 3% 40. 1%
YOLOv5-L Darknet-53 640×640 468 41. 2 78. 3% 36. 5%
YOLOv5-X Darknet-53 640×640 576 86. 2 76. 5% 39. 3%

YOLOv5-EA-FPNs Darknet-53 640×640 532 68. 4 79. 4% 44. 1%

　 　 由实验结果可知,在相同数据集的情况下,Faster
 

R-
CNN 由于采用 resnet101 作为骨干网络,该网络结构较

深,不适合当前数据集,所以导致实验结果不佳;YOLOv3
属于轻量级网络结构,由于当前数据集数量较多,且缺陷

复杂,所以导致实验结果较差;YOLOv5 三组模型,主干

网络相同,模型深度不同,其中 M 网络深度相对较浅,参
数量较少,X 网络相对较深,参数量较多,与当前数据集

都不契合,只有 L 模型效果最佳;本文在 L 模型上进行改

进,提出 YOLOv5-EA-FPNs,由实验结果可知,本文改进

的模型实验结果最好,mAP@ 0. 5、mAP@ . 5:. 95 分别为

79. 4%、44. 1%,相比于 L 模型增长了 1. 2%、7. 6%,表明

本文提出的模型更加适合当前芯片数据集。
2)EA-FPNs 实验结果对比

为验证本文提出的 EA-FPNs 结构的有效性,选取

YOLOv5-L 模型进行消融实验。 由表 2 可知,YOLOv5-L
是除本文提出的模型外,当下实验效果最好的模型,所以

选取 YOLOv5-L、YOLOv5-EA-FPNs 进行消融实验。
图 6 为本次消融实验结果。 从图中可知,EA-FPNs

对变色、金疙瘩、划伤、钻蚀提升效果不明显,对多边少

边、崩边、栅条缺损等尺度变化较大的缺陷,平均精度有

明显的提升,可见 EA-FPNs 能够提升尺度差异较大缺陷

的检测效果。
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图 6　 各类别缺陷平均精度

Fig. 6　 The
 

average
 

precision
 

of
 

defects
 

by
 

class

　 　 在表 4 中,由小、中、大目标的 AP、AR 实验结果可

知,小目标的 AP、AR 分别上升了 1. 6%和 0. 8%,且对中、
大目标的检测结果没有造成影响。 图 9 为 S-Detector 特

征图展示结果, 其中, 前 3 层特征图 ( F1、 F2、 F3 ) 为

YOLOv5-L 的小目标缺陷提取效果,S-Detector 为新增特

征图的提取效果,从图 7 中可以看出,S-Detector 对小目

标特征的提取能力更强,学习效果更好。

图 7　 S-Detector 特征图展示

Fig. 7　 The
 

display
 

of
 

S-Detector
 

feature
 

maps

表 4　 S-Detector 小目标实验结果对比

Table
 

4　 The
 

comparison
 

of
 

the
 

results
 

with
 

S-Detector
 

small
 

target
 

experiment

APsmall APmiddle APlarge ARsmall ARmiddle ARlarge

YOLOv5-L 12. 3% 18. 5% 23. 3% 17. 1% 22. 7% 28. 4%
YOLOv5-EA-FPNs 13. 9%(↑1. 6%) 18. 4% 23. 6%(↑0. 3%) 17. 9%(↑0. 8%) 22. 7% 28. 4%

　 　 图 8 为 YOLOv5-L 与 YOLOv5-EA-FPNs 检测结果对

比情况。 检测结果表明,本文改进的结构检测精度较高,
且漏检率、冗余框、小目标检测率等情况相对较好。

3)BFA 检测结果对比

由于 NMS 算法存在没有过滤掉冗余框的情况,本文

提出了 BFA,对冗余框进行融合,以获得更好的检测结

果。 图 9 为 BFA 检测结果对比情况。 由图 9 可知,该算

法能够在不影响预测框精准度的情况下,有效的消除了

冗余框,并且保留了最高置信度分数。
表 5 为使用 BFA 前后 2

 

500 张数据集测试时长、速
度对比情况,没有使用 BFA 前, EA-FPNs 推理时长为

85 s,平均 32
 

μs / 张;使用 BFA 的推理时长为 67 s,平均

26. 8
 

μs / 张。

表 5　 BFA 测试时长对比情况

Table
 

5　 The
 

comparison
 

of
 

BFA
 

test
 

duration
测试数量 / 张 总时长 / s 平均时长 / (张 / μs)

Before
 

BFA 2
 

500 85 32 张 / μs
After

 

BFA 2
 

500 67(↓18) 26. 8 张 / μs(↓5. 2μs)

4　 结　 论

　 　 本文使用改进的 YOLOv5 深度学习网络对芯片表面

缺陷进行检测,有如下 2 个方面的改进。
1)

 

针对芯片缺陷尺寸跨度大,存在类间相似性等问

题,本文提出了 EA-FPNs 结构,加强对不同尺度芯片缺

陷的学习;针对小目标检测不佳的问题,本文在 YOLOv5
结构基础上,新增 S-Detector,并融合 AM,从而加强模型

对小目标缺陷特征的学习能力。
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图 8　 YOLOv5-L 与 YOLOv5-EA-FPNs 检测结果对比情况

Fig. 8　 The
 

comparison
 

of
 

detection
 

results
 

with
 

YOLOv5-L
 

and
 

YOLOv5-EA-FPNs

图 9　 BFA 检测结果对比情况

Fig. 9　 The
 

comparison
 

of
 

bounding
 

BFA
 

detection
 

results

2)
 

针对后处理阶段,预测框存在冗余情况,造成时

间开销大的问题,本文以面积占比为权重,融合多余预测

框,并以最高置信度作为融合框的置信度,提出了 BFA,
该算法在确保最高置信度的同时,避免了预测框定位不

准的情况。

本文模型与 YOLOv5、Faster
 

R-CNN、YOLOv3 等进行

实验对比,实验结果表明,YOLOv5-EA-FPNs 较上述模型

在检测精度上效果更佳,对比 YOLOv5-L,mAP @ 0. 5 提

升了 1. 2%,小目标检测精度提升了 1. 6%;使用 BFA 消

除冗余框的同时,平均检测时长为 26. 8
 

μs / 张,较使用
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BFA 前减少了 5. 2
 

μs。 为工业芯片表面缺陷检测提供了

一种有效的方案。
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