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摘　 要:针对移动机器人在遍历多目标点的路径规划中存在路径较长且不平滑等问题,本文提出一种基于 ISMA 的多点遍历路

径规划方法。 首先,结合 Singer 映射和小孔成像反向学习策略改进标准黏菌算法( SMA);然后初步构建地图,使用 ISMA 规划

路径,以确定三角网格最大边长的最优值;最后,基于三角网格最大边长的最优值重新构建三角网格地图,使用 ISMA 生成路

径,并通过 B 样条函数对路径进行光滑处理,提升路径平滑度。 基准函数测试结果表明,ISMA 收敛速度更快,寻优精度更高。
三角网格地图上的路径规划实验表明:ISMA 规划的路径长度和平滑度明显优于 SMA、SSA 和 WOA,与 SMA、SSA 和 WOA 相比,
在较复杂的场景中 ISMA 生成路径的长度依次减少了 6. 31%、18. 76%和 19. 74%,验证了 ISMA 方法的有效性。
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Abstract:
 

Aiming
 

at
 

the
 

problems
 

of
 

long
 

and
 

unsmooth
 

paths
 

in
 

the
 

path
 

planning
 

of
 

mobile
 

robots
 

traversing
 

multiple
 

target
 

points,
 

this
 

paper
 

proposes
 

a
 

multi-point
 

traversal
 

path
 

planning
 

method
 

based
 

on
 

improved
 

SMA.
 

Firstly,
 

the
 

standard
 

slime
 

mold
 

algorithm
 

(SMA)
 

is
 

improved
 

by
 

combining
 

Singer
 

mapping
 

and
 

small
 

hole
 

imaging
 

reverse
 

learning
 

strategy.
 

Then,
 

the
 

map
 

is
 

preliminarily
 

constructed,
 

and
 

the
 

improved
 

SMA
 

is
 

used
 

to
 

plan
 

the
 

path
 

to
 

determine
 

the
 

optimal
 

value
 

of
 

the
 

maximum
 

side
 

length
 

of
 

the
 

triangular
 

mesh.
 

Finally,
 

the
 

triangular
 

grid
 

map
 

is
 

reconstructed
 

based
 

on
 

the
 

optimal
 

value
 

of
 

the
 

maximum
 

edge
 

length
 

of
 

the
 

triangular
 

mesh,
 

the
 

improved
 

SMA
 

is
 

used
 

to
 

generate
 

the
 

path,
 

and
 

the
 

path
 

is
 

smoothed
 

by
 

the
 

B
 

spline
 

function
 

to
 

improve
 

the
 

smoothness
 

of
 

the
 

path.
 

The
 

benchmark
 

function
 

test
 

results
 

show
 

that
 

the
 

improved
 

SMA
 

converges
 

faster
 

and
 

has
 

higher
 

optimization
 

accuracy.
 

Path
 

planning
 

experiments
 

on
 

triangular
 

grid
 

maps
 

show
 

that
 

the
 

path
 

length
 

and
 

smoothness
 

of
 

improved
 

SMA
 

planning
 

are
 

significantly
 

better
 

than
 

those
 

of
 

SMA,
 

SSA
 

and
 

WOA,
 

and
 

compared
 

with
 

SMA,
 

SSA
 

and
 

WOA,
 

the
 

length
 

of
 

the
 

improved
 

SMA
 

generated
 

path
 

in
 

complex
 

scene
 

is
 

reduced
 

by
 

6. 31%,
 

18. 76%
 

and
 

19. 74%,
 

which
 

verifies
 

the
 

effectiveness
 

of
 

the
 

improved
 

SMA
 

method.
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0　 引　 言

　 　 移动机器人遍历多个目标点的路径规划是指在复

杂的环境中生成一条从起点开始,经过所有目标点的

无碰撞的可行路径,多被应用于变电站巡检、生产车间

物料配送和快递投放等场景中[1] 。 在这些场景中,路
径的长度和平滑度对机器人能否及时、准确地到达目

标点有的很大影响,是解决移动机器人路径规划问题

的关键。
针对以上问题,大量传统算法被应用于路径规划的

研究中[2] 。 文献[3]将跳点搜索策略与 A∗算法相结合,
减少了路径长度,但测试地图较小且环境简单,难以证明

算法解决复杂问题的能力。 文献[ 4] 通过生成路径样

本,提高概率路线图法在复杂环境中规划路径的性能,但
抽样的随机性导致算法的完备性较弱,稳定性低。 文献

[5]改进了 DWA 算法的评价函数,提高了路径规划的成

功率,但时间成本消耗较大。 文献[6]改进的 RRT 算法

在高维空间的路径规划的效果较好,但在低维空间规划

效果不佳。 文献[7]在遗传算法中增加了新的自适应策

略,提升了算法跳出局部最优的能力,但存在收敛慢、效
率过低等问题。 此外,由于智能算法在面对 NP 问题时

的表现比传统算法更加高效[8] ,被广泛应用于路径规划

问题中[9] 。 文献[10] 对蚁群的全局信息素进行优化设

计,提升了全局搜索能力和收敛速度,但规划的路径中拐

点较多不平滑。 文献[11] 提出了 PSO-MFB 算法,设计

新的局部搜索算法用来检测路径中的不可行点,并转化

为可行解,但在搜索空间中容易陷入停滞和局部最优。
黏菌算法(slime

 

mould
 

algorithm,SMA)是 Li 等[12] 提出的

一种新型智能算法,该算法参数较少,优化效率高,相较

于其他算法代码结构简单,可扩展性强,在寻找最优解问

题时能快速收敛并求解[13] ,已被成功应用于图像分割、
轴承故障检测等领域[14] 。

围绕 SMA 以上特点,本文提出基于 ISMA 的多点

遍历路径规划方法,首先将 Singer 映射、逐维小孔成像

反向学习策略与 SMA 相结合,提高 SMA 的收敛速度和

寻优精度,提升算法跳出局部最优的性能,缩短移动机

器人规划的路径长度;然后初步构建地图,使用 ISMA
规划路径,实验对比以确定三角网格最大边长的最优

值;最后,基于三角网格最大边长的最优值构建地图,
使用 ISMA 生成路径,并通过 B 样条函数对路径进行光

滑处理,提升路径平滑度。 实验表明,与其他算法相

比,本文提出的 ISMA 对于复杂环境下的路径规划具有

更好的效果。

1　 黏菌算法及其改进

1. 1　 标准黏菌算法

　 　 SMA 是一种新型群智能算法,主要用数学模型模拟

了黏菌在觅食过程中的形态和行为的变化。 黏菌在觅食

过程中位置更新如下:

　 X( t + 1) =
rand(UB - LB) + LB,rand < z
Xb( t) + vb·(W·XA( t) - XB( t))
vc·X( t),r ≥ p

ì

î

í

ïï

ïï

,r < p

(1)
p = tanh | S( i) - DF | (2)

式中:X( t+1)表示当前黏菌搜索个体的位置;Xb 表示当

前食物浓度最高的位置;XA 和 XB 表示两个随机选取的

黏菌位置;UB 和 LB 表示当前所搜空间的上下边界;rand
和 r 表示在区间[0,1] 上的随机数;文献[ 10] 表明,z =
0. 03 时算法的性能最佳;Vb 的取值范围为[ -a,a];参数

Vc 从 1 线性递减到 0;p 为条件参数,用于控制黏菌的位

置更新方式,计算如式(2)所示;S( i)为 X( t)的适应度,
其中 i 为适应度排序的索引值;DF 为所有迭代过程中所

获得的最佳适应度值。 参数 a 的计算为:

a = arctanh·(1 - t
tmax

) (3)

式中:t 为当前迭代次数;tmax 是最大迭代次数。
W 为黏菌的质量系数,反映了黏菌在不同食物浓度

下的震荡频率,其公式为:
SmellIndex( i) = sort( s) (4)
W(SmellIndex( i)) =

1 + rlog(
bF - s( i)
bF - wF

+ 1),condition

1 - rlog(
bF - s( i)
bF - wF

+ 1),其他

ì

î

í

ï
ïï

ï
ï

(5)

式中:bF 和 wF 表示当前迭代过程中获得的最优和最差

适应度值;SmellIndex( i) 表示适应度序列;r 表示在区间

[0,1]上的随机值,用以模拟黏菌静脉收缩模式的不确

定性;condition 表示 S( i)排序中前 1 / 2 的序列。
1. 2　 改进黏菌算法

　 　 针对 SMA 算法初始种群分布不均匀和在搜索后期

易陷入局部最优等问题,本文采用 Singer 混沌映射生成

初始种群,并引入逐维小孔成像反向学习策略对算法进

行改进,以提升算法性能。
1)混沌序列初始化

SMA 算法采用随机数法在搜索空间内生成初始种

群,容易出现黏菌个体分布不均匀的现象,对算法最终收

敛精度有一定的影响[15] 。 混沌是在非线性系统中发现
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的一种确定性的、随机的、非周期的方法[16] 。 可以利用

混沌的特性,将变量映射到混沌空间的取值区间内,将得

到的解转换到优化变量空间。 Singer 混沌映射数学表达

式简单,具有随机性和遍历性[17] ,因此本文采用 Singer
混沌映射来生成初始种群,使其分布更加均匀,从而提高

算法的收敛速度,Singer 混沌映射的定义如式(6)所示:
Xk+1 = η(7. 86Xk - 23. 31X2

K +

28. 75X3
K - 13. 302

 

875X4
K)

(6)

其中, η 满足在(0. 9,1. 08)中发生混沌,本文取 η =
1. 069。 从图 1 可以看出,Singer 映射生成的初始种群更

均匀,增强了种群多样性,能有效提高算法的收敛速度和

寻优精度。

图 1　 Singer 映射的随机性与维度的关系

Fig. 1　 Relationship
 

between
 

randomness
 

and
dimension

 

of
 

Singer
 

mapping

2)逐维小孔成像反向学习

与大部分群智能算法相同,SMA 在搜索后期容易陷

入局部最优。 针对此类问题,有学者提出了反向学习的

方法,其研究结果表明相比当前解,反向解逼近最优解的

概率要高出一半[18] ,该方法可以有效提高种群的多样

性,加强算法在搜索后期跳出局部最优的能力。
文献[19]提出了逐维小孔成像反向学习策略,对可

行解逐维求反向解,降低了各个维度间的相互干扰。 受

此启发,本文将逐维小孔成像反向学习策略引入 SMA。
小孔成像原理示意如图 2 所示。

图 2　 小孔成像反向学习示意

Fig. 2　 Schematic
 

diagram
 

of
 

reverse
 

learning
 

of
 

keyhole
 

imaging

假设火焰 p 的高度是 h ,在 X 轴上的投影是 X j
best,a j

和 b j 是 X 轴的上下限,在基点 o 处放置一个小孔屏,火焰

会透过小孔,在接收屏上产生一个高度为 h′ 的倒像 p′ ,
此时在 X 轴生成一个反向点 X′j

best (第 j 维的反向解)。 由

小孔成像的原理可以得出:
(a j + b j) / 2 - X j

best

X′jbest - (a j + b j) / 2
= h
h′

(7)

令 h / h′ = n ,通过变换得到 X′j
best ,表达式为:

X′jbest =
(a j + b j)

2
+

(a j + b j)
2n

-
X j

best

n
(8)

在本文中 a j 和 b j 表示搜索空间的上下界,其中 a j 的

值为 0,b j 的值为目标点数量的 10 倍。 ISMA 每迭代一

次,都要利用式(8)计算得到反向解,并与其他维度的值

组成新的解,有效扩大了算法的搜索范围,使算法更靠近

最优解,从而跳出局部最优区域。
ISMA 可以用伪代码表述其执行流程, 如算法 1

所示。

算法 1　 改进的黏菌算法伪代码执行步骤:ISMA

设置算法种群规模 N,最大迭代次数 tmax

利用 Singer 混沌映射初始化黏菌 Xi ( i= 1,2,…,N),设置 t= 0

While( t< tmax )

利用适应度函数计算每个黏菌个体的 Xi 的适应度

更新当前最优解 Xb 及其适应度值

根据公式更新为黏菌的质量系数 W
For

 

每个黏菌个体 Xi

根据式(2)和(3)更新参数 Vb,Vc 和 p

根据式(1)更新黏菌位置

利用逐维小孔成像反向学习策略式(8) 更新当前最优解,计算更

新前后的适应度值,保留其中最优个体

End
 

For
t= t+1
End

 

While
算法结束,输出全局最优解及适应度值

　 　 3)ISMA 测试

为充分验证本文提出的 ISMA 的性能,选取 5 个基准

函数对 SMA 和 ISMA 进行 30 次对比试验。 基准函数的

名称、维度、变量范围和理论值如表 1 所示,其中,Sphere、
Schwefel

 

2. 22 和 Schwefel
 

2. 21 是单峰测试函数,用于评

估算法的收敛速度和精度;Ratrigin 和 Ackley 是多峰测试

函数,用于评估算法规避局部最优,寻找全局最优的

能力。
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表 1　 基准测试函数

Table
 

1　 Benchmark
 

function
函数名称 维度 变量范围 理论值

Sphere 30 [ -100,100] 0
Schwefel

 

2. 22 30 [ -10,10] 0
Schwefel

 

2. 21 30 [ -100,100] 0
Ratrigin 30 [ -5. 12,5. 12] 0
Ackley 30 [ -32,32] 0

　 　 本文实验环境为 Window11 系统,16
 

G 运行内存,i7-
11800H 处理器,MATLAB

 

R2022a 编程语言;设置种群数

量为 30,最大迭代次数为 500。 为减少随机因素的影响,
对 5 个基准函数独立运行 30 次,记录求得最优函数值的

平均值和标准差,测试结果如表 2、图 3 所示。
表 2　 基准函数结果对比

Table
 

2　 Comparison
 

results
 

of
 

Benchmark
 

functions
函数名称 评价指标 SMA ISMA

Sphere 平均值
标准差

0
0

0
0

Schwefel
 

2. 22 平均值
标准差

3. 96×10-154

2. 09×10-153
0
0

Schwefel
 

2. 21 平均值
标准差

2. 38×10-150

1. 30×10-149
0
0

Rastrigin 平均值
标准差

0
0

0
0

Ackley 平均值
标准差

4. 44×10-16

2. 01×10-31
4. 44×10-16

2. 01×10-31

图 3　 两种算法对基准函数的收敛曲线

Fig. 3　 Convergence
 

curves
 

of
 

the
 

two
 

algorithms
 

to
 

the
 

reference
 

function

　 　 由表 2 和图 3 可以看出,对于测试函数 Sphere、
Rastrigin 和 Ackley,虽然最优函数值的平均值和标准差

都接近理论值,但 ISMA 收敛速度比 SMA 更快,且 SMA
容易 陷 入 局 部 最 优。 在 测 试 函 数 Schwefe

 

2. 22 和

Schwefel
 

2. 21 的表现上,ISMA 最优函数值的平均值和标

准差不仅均优于 SMA,而且有着更快的收敛速度。 综上

所述,相比于 SMA,ISMA 收敛更快,精度更高,不易陷入

局部最优,有着更高的可行性和有效性。

2　 构建三角网格地图

　 　 传统的栅格地图在低维空间构建较容易,越小的栅

格描述对不规则障碍物越精准,但环境信息会占据大量

的存储空间,规划路径的速度也会降低。 与矩形栅格相

比,三角网格对地图和障碍物的形状有着更好的适应性。
Liu 等[20] 提出了 TMM 方法,该方法采用三角网格对地图

进行剖分,很好地求解了地图中机器人的路径规划问题,
故本文选用三角网格地图建立环境模型。
2. 1　 三角剖分地图建模

　 　 三角网格地图采用单元连接矩阵 C 和节点矩阵 N
来表示,假设剖分后的地图里有 k 个单元和 m 个节点,
第 i 个节点 P i 的坐标为( a1i,b2i,c3i ) ,则节点矩阵表

示为:
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N
 

=
 

a11 a12… a1m

b21 b22… b2m

c31 c32… c3m

( ) (9)

单元连接矩阵表示为:

C
 

=
 

p11 p12… p1k

p21 p22… p2k

p31 p32… p3k

( ) (10)

其中, P ij 表示第 j 个单元的第 i 个节点编号。 连接

矩阵还表示单元中节点的连接关系,即 P1j 与 P2j 相连,
P2j 与 P3j 相连, P3j 与 P1j 相连。

基于三角网格算法建立该环境模型的有向赋权图,
要对各个单元进行组装,将各个单元矩阵元素按照关联

的节点编号放置到整体节点关联矩阵之中。 由单元连接

矩阵可以建立节点关联矩阵 T 与 S:
T = [ t1 t2 … tn] (11)

S = [s1 s2 … sn] (12)
节点关联矩阵 T 与 S 中的元素均是网格节点编号,

T 中的第 i 个元素 t i 与 S 中的第 i 个元素 S i 相互关联,表
示这两个节点相互连接。 用距离矩阵 D 表示表示关联

矩阵 T 和 S 的距离:
D = [d1 d2 … dn] (13)

2. 2　 三角网格大小的确立

　 　 三角网格的最大边长 M 需要预先手动设置,因此需

要对不同大小的 M 进行测试,以确定 M 的最佳值。 M 的

取值需要小于两个障碍物之间最短距离的 1 / 4,以确定

规划的路径可以在任何障碍物之间通过。 地图的大小是

500 m×500 m,设立 14 个目标点,使用 ISMA 在 M 值大小

不同的地图上生成一条遍历所有目标点并最终回到初始

位置的路径,每张地图独立运行 10 次实验,结果如图 4
所示,具体数值如表 3 所示。

图 4　 规划的路径结果对比

Fig. 4　 Comparison
 

of
 

the
 

planned
 

path
 

results

表 3　 不同 M 下对比结果
Table

 

3　 Comparison
 

results
 

of
 

different
 

M
M / m 时间 / s 长度 / m

1 17. 924 2
 

026. 862
5 3. 40 2

 

030. 165
10 2. 839 2

 

003. 028
20 2. 843 2

 

122. 330
50 2. 769 2

 

322. 294

　 　 由图 4 和表 3 可知,当 M 越小,计算的时间就越长;
M= 10 m 时,规划的路径长度最短;当M>10 m 时,时间缩

短幅度不大,但路径长度大幅增加,且圆形障碍物的表示

不精准,算法容易陷入局部最优。 综上所述,选取边长为

10 m 的三角网格建立环境地图。

3　 基于 ISMA 的路径规划

　 　 为验证 ISMA 在三角网格地图中的有效性,本文利

用 MATLAB
 

R2022a 进行 3 组仿真对比试验。 使用 B 样

条函数对 ISMA 规划的路径进行曲线拟合,提高路径的

平滑度,B 样条函数基本公式如下:



　 第 3 期 基于 ISMA 的多点遍历路径规划方法 ·207　　 ·

Q(u) = ∑
v

k = 0
GkH i,w(u) (14)

其中, Gk 是控制顶点, H i,w(u) 是最高阶数是 v 的 B
样条在节点 u 上的基函数。

考虑到移动机器人复杂的工作环境,构建 3 个尺寸

一致的三角网格地图场景。 地图的大小是 500 m ×

500 m,白色部分表示不可通行区域,每个场景地图设立

多个要遍历的目标点,使用 ISMA、SMA、鲸鱼算法( whale
 

optimization
 

algorithm,WOA)和狮群优化算法( loin
 

swarm
 

optimization,LSO)在每个场景地图上各生成一条遍历所

有目标点并最终回到初始位置的路径,其仿真结果如图

5 ~ 7 所示。

图 5　 场景 1 仿真结果

Fig. 5　 Scenario
 

1
 

simulation
 

results

　 　 3 个地图场景复杂程度逐渐增加,关键节点也逐渐

增多,具有一定的代表性。 针对每个地图场景,利用本文

所提的算法各进行 10 次仿真实验,取其平均值作为算法

性能指标,种群数量和迭代次数都为 500,结果如表 4 所

示。 使用 SMA+
 

Singer 映射、SMA +小孔成像反向学习、
SMA+B 样条函数 3 种路径规划算法分别在场景 3 中各

进行 10 次仿真实验得到计算时间,并取其平均值,实验

结果如表 5 所示。
从表 4 和图 5 ~ 7 中可以看出,在 3 个不同的场景地

图中,4 种路径规划算法都能规划出路径,但路径长度和

计算时间存在一定差异。 相比于其他 3 种算法,由于增

加了 Singer 映射、小孔成像反向学习策略和 B 样条函数,
ISMA 的计算量大量增加,但实际效率并没有相差太多,
由表 5 得知,SMA +

 

Singer 映射、SMA +小孔成像反向学

习、SMA+B 样条函数 3 种路径规划算法相较于 SMA 算

法,计算时间分别平均增加了 0. 048、0. 632、0. 034 s,时

表 4　 不同规划路径方法的路径长度、计算时间

Table
 

4　 Path
 

length
 

and
 

computation
 

time
 

for
different

 

planning
 

path
 

methods
场景 路径规划算法 路径长度 / m 计算时间 / s

场景 1

ISMA 1
 

284. 306 2. 244
SMA 1

 

361. 972 1. 695
WOA 1

 

366. 403 1. 506
LSO 1

 

322. 094 0. 595

场景 2

ISMA 1
 

219. 905 2. 540
SMA 1

 

292. 906 1. 929
WOA 1

 

284. 580 1. 750
LSO 1

 

294. 987 0. 773

场景 3

ISMA 1
 

889. 185 2. 921
SMA 2

 

016. 426 2. 288
WOA 2

 

325. 561 2. 290
LSO 2

 

353. 980 1. 128
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图 6　 场景 2 仿真结果

Fig. 6　 Scenario
 

2
 

simulation
 

result

表 5　 3 种路径规划方法的计算时间

Table
 

5　 Computation
 

time
 

of
 

the
 

3
 

path
 

planning
 

methods
路径规划算法 计算时间 / s

SMA+
 

Singer 映射 2. 276
SMA+反向学习 2. 851

SMA+B 样条 2. 262

间分布比例为 0. 067 ∶ 0. 885 ∶ 0. 04。 同时,ISMA 生成的

路径长度在各个场景地图中都是最短的,并且场景地图

越复杂,要遍历的目标点越多,这一优势就越明显。 例如

在场景 3 中,与 SMA、WOA 和 LSO 相比,ISMA 规划的路

径长度依次减少了 6. 31%、18. 76%和 19. 74%,且其他 3
种算法都容易陷入局部最优,规划出来的路径并非理想

的曲线。 综上可知,ISMA 方法规划的路径最短,路径平

滑度更好,不易陷入局部最优,搜索全局最优的能力更

强,证明了基于 ISMA 的多点遍历路径规划方法的有

效性。

4　 结　 论

　 　 针对移动机器人在遍历多目标点的作业中规划的路

径较长且不平滑等问题,本文提出一种基于改进的 SMA
的多点遍历路径规划方法。 首先,利用 Singer 映射和小

孔成像反向学习策略改进 SMA,提高算法的收敛速度和

寻优精度,加强算法在搜索后期跳出局部最优的能力;其
次进行三角剖分地图建模,确定三角网格大小的最佳值;
最后构建三角网格地图,使用 ISMA 规划路径,并采用 B
样条函数进行曲线拟合,提高路径平滑度。 在仿真实验

中,较短的路径长度和规划时间说明了该方法的有效性。
未来的研究内容是将本文提出的新方法应用到动态环境

下移动机器人的路径规划。
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