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基于偏振信息图像增强的多目标检测∗
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(湖南大学电气与信息工程学院　 长沙　 410012)

摘　 要:偏振是光的重要特性之一,偏振成像技术能够获取场景中目标的强度信息和偏振信息,偏振信息能够反映出目标物体

表面的材质特征。 本文针对雾霾天气状况下道路场景中常见目标识别结果的准确性要求,提出了两种基于偏振信息的图像增

强方案。 首先经过多次采集实验,经过数据清洗、图像标注构建偏振数据集,共 4
 

649 张图像和 31
 

877 个标签。 针对雾霾轻度

污染的场景,通过区域自动生长算法分割出偏振强度图像中的天空区域,根据天空区域的偏振度和偏振角信息以及大气物理散

射模型反演出目标反射光,从而实现图像去雾。 针对雾霾重度污染的场景,使用小波变换的方式对图像进行增强,利用偏振度

图像来增强强度图像中的目标轮廓。 使用图像灰度方差和图像信息熵作为图像质量评价指标,使用 YOLO
 

v5s 深度学习网络

进行目标检测。 实验结果表明,雾霾轻度污染的情况下,图像质量和目标检测准确性均有所提升,图像信息熵提升了 3. 36%,灰
度方差提升了 40. 27%,目标检测 mAP 达到了 76. 40%,提升了 12. 69%;雾霾重度污染的情况下,目标检测 mAP 提升约 1. 69%。
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Abstract:
 

Polarization
 

is
 

one
 

of
 

the
 

important
 

characteristics
 

of
 

light.
 

Polarization
 

imaging
 

technology
 

can
 

obtain
 

the
 

intensity
 

information
 

and
 

polarization
 

information
 

of
 

the
 

target
 

in
 

the
 

scene.
 

Polarization
 

information
 

can
 

reflect
 

the
 

material
 

characteristics
 

of
 

the
 

target
 

surface.
 

In
 

this
 

paper,
 

two
 

image
 

enhancement
 

schemes
 

based
 

on
 

polarization
 

information
 

are
 

proposed
 

to
 

meet
 

the
 

accuracy
 

requirements
 

of
 

common
 

target
 

recognition
 

results
 

in
 

road
 

scenes
 

under
 

haze
 

weather
 

conditions.
 

First
 

of
 

all,
 

the
 

polarization
 

data
 

set
 

is
 

constructed
 

through
 

multiple
 

acquisition
 

experiments,
 

data
 

cleaning
 

and
 

image
 

labeling,
 

with
 

a
 

total
 

of
 

4
 

649
 

images
 

and
 

31
 

877
 

tags.
 

For
 

the
 

scene
 

with
 

slight
 

haze
 

pollution,
 

the
 

sky
 

region
 

in
 

the
 

polarization
 

intensity
 

image
 

is
 

segmented
 

by
 

the
 

region
 

automatic
 

growth
 

algorithm,
 

and
 

the
 

reflected
 

light
 

of
 

the
 

target
 

is
 

reversely
 

generated
 

according
 

to
 

the
 

polarization
 

degree
 

and
 

polarization
 

angle
 

information
 

of
 

the
 

sky
 

region
 

and
 

the
 

atmospheric
 

physical
 

scattering
 

model,
 

so
 

as
 

to
 

realize
 

the
 

image
 

defogging.
 

For
 

the
 

heavily
 

polluted
 

scene
 

of
 

haze,
 

wavelet
 

transform
 

is
 

used
 

to
 

enhance
 

the
 

image,
 

and
 

the
 

degree
 

of
 

polarization
 

image
 

is
 

used
 

to
 

enhance
 

the
 

target
 

contour
 

in
 

the
 

intensity
 

image.
 

The
 

image
 

gray
 

variance
 

and
 

image
 

information
 

entropy
 

are
 

used
 

as
 

image
 

quality
 

evaluation
 

indicators,
 

and
 

the
 

YOLO
 

v5s
 

deep
 

learning
 

network
 

is
 

used
 

for
 

object
 

detection.
 

The
 

results
 

show
 

that
 

in
 

the
 

case
 

of
 

light
 

haze
 

pollution,
 

the
 

image
 

quality
 

and
 

object
 

detection
 

accuracy
 

have
 

been
 

improved,
 

the
 

image
 

information
 

entropy
 

has
 

increased
 

by
 

3. 36%,
 

the
 

gray
 

variance
 

has
 

increased
 

by
 

40. 27%,
 

and
 

the
 

object
 

detection
 

mAP
 

has
 

reached
 

76. 40%,
 

increased
 

by
 

12. 69%.
 

In
 

the
 

case
 

of
 

heavy
 

smog
 

pollution,
 

the
 

object
 

detection
 

mAP
 

increased
 

by
 

about
 

1. 69%.
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0　 引　 言

　 　 随着目前环境污染问题的加剧,雾、霾天气的出现频

率显著增加,其影响范围和影响时间也在变大变长[1] 。
而雾霾天气会严重影响大部分室外光学成像系统的成像

质量[2] ,从而导致对场景中的目标进行自动检测的准确

度明显下降。 偏振是光的一种基本属性,目前偏振的应

用大多集中在偏振光仿生导航[3] ,在目标检测领域应用

较少。 场景中不同材质的目标因其自身属性的不同而具

有不同的偏振特性,如表面特性、粗糙度、阴影和外形等,
同时偏振成像受成像环境的影响较小,目标轮廓清晰,对
复杂环境下的道路目标检测具有较高的应用价值[4] 。

目前针对雾霾环境的图像处理技术主要分为单幅图

像去雾和多幅图像去雾[5-6] 。 单幅图像去雾主要是对单

幅雾霾图像进行处理,通过图像增强或者图像复原进行

去雾。 图像增强算法是对雾霾图像中的目标细节进行增

强,典型的图像增强算法有直方图均衡化[7] 、RetineX 技

术[8] 以及小波变换技术等,该类算法比较简单,处理速度

快,但算法的局限度较高。 图像复原技术[9-11] 是通过对

雾天条件下的大气物理散射模型进行反演,利用先验知

识或者假设对去雾处理中的干扰因素进行估计,尽可能

减少干扰因素对图像去雾的影响,这种方法的复杂程度

较高,处理速度较慢,不适用于图像的实时处理。
多幅图像去雾住要是利用图像中目标散射光和大气

散射光的偏振特性不同,通过偏振差分技术获取偏振图

像,依据大气物理散射模型对图像进行去雾处理,可以有

效提高目标的清晰度和对比度。 王鹏等[12] 通过引入容

差参数和调整透射率因子来避免去雾后出现的颜色失

真,但是这种方法存在大量假设,仅适用于特定场景。 方

帅等[13] 同时考虑了大气散射光和目标反射光的偏振效

应,从模型上解决了目标反射光的偏振效应对图像退化

的影响,但是目标对比度增强的同时,图像噪声也更加明

显。 Qu 等[14] 通过空气光和目标反射光的不相关性来估

计大气光偏振度,并且整个去雾过程不依赖图像中是否

包括天空区域,但是仅适用于图像中没有镜面物体的情

况。 赵录建等[15] 通过 3 个角度下目标的偏振图像,分析

偏振图像光强随着偏振角的变化规律,利用偏振滤波和

亮通道先验方法分别估计大气光偏振度和无穷远处大气

光强,最终重构出无雾图像,但是算法复杂度较高,运算

速度较慢。 因此,基于偏振信息的多幅图像去雾增强处

理受场景的影响较大,算法鲁棒性较差,对于雾霾污染较

重的情况尚未有较好的处理方法。
目前公开的偏振成像数据集较为匮乏,雾霾环境的

偏振数据更是少之又少,大多是以仿真的形式进行模拟,
无法反映真实的雾霾环境,同时缺少对道路场景下雾霾

天气的实时处理。 针对上述问题,本文搭建了偏振实时

图像采集系统,构建道路场景下偏振和可见光数据集,并
对雾霾天气的偏振图像进行去雾处理,通过融合可见光

强度图像和偏振度图像来增强系统的泛化性,从而应对

各种复杂环境条件。

1　 相机成像系统的搭建

　 　 本文研究多尘雾环境下道路场景中的常见目标(人、
汽车、路标、路牌和信号灯)的识别与定位,为无人驾驶汽

车的自动驾驶功能[16] 提供决策依据。 如图 1 所示,为了

构建高质量的数据集,需要搭建稳定的相机成像平台,并
且保证相机的实时触发,这是进行无人驾驶汽车精准决

策的基础和前提。
如图 1 所示,为了保证每次实验过程中,相机的位置

固定并且光轴与水平面平行,使用三脚架和云台对相机

位置进行调整和固定。

图 1　 相机成像系统

Fig. 1　 Camera
 

imaging
 

system

由于所使用的偏振相机的帧率是 75
 

Hz,为了保证构

建的数据集中数据的重复性较低,本文采用硬件外部触

发的方式来控制偏振相机的曝光,偏振相机的技术参数

如表 1 所示。
表 1　 偏振相机技术参数

Table
 

1　 Technical
 

parameters
 

of
 

polarization
 

camera
参数 偏振相机

型号 BFS-U3-51S5P-C
波长范围 400 ~ 800

 

nm
分辨率 2

 

448×2
 

048
帧率 75

 

Hz
传输方式 USB3. 0 串口

像素尺寸 3. 45
 

μm

　 　 本文中偏振相机的曝光控制主要利用多线程编程中

的读写锁,即偏振相机对应一个线程,控制曝光对应一个

线程,通过维护一个全局变量来表示控制相机曝光的状
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态。 经过测试,线程之间时间对齐的误差可以控制在

30 ms 以内。

2　 偏振数据集的构建

　 　 常见的道路场景下的目标主要包括人、汽车、自行

车、摩托车、路牌等,这些目标是无人驾驶汽车主要需要

识别的对象,对自动驾驶汽车的行为决策有很大的影

响[17] ,因此本文建立了道路场景下包括人、汽车、自行

车、摩托车和路牌共 5 类目标,将其标记为 person、car、
bike、motorbike 和 guidepost。

本文所构建数据集的来源主要包括网络开源偏振数

据集和偏振相机拍摄两个部分。 偏振相机传感器中的偏

振镜是在传感器上每个透镜下通过线栅偏振镜微观实现

的,偏振镜在四个像素组中具有 0°、45°、90°和 135°偏振

角,分别对应相机输出图像的 I0、I45、I90 和 I135,分别表示

能透过的不同极化角度的偏振光,如图 2 所示。 通过图

像解析可以得到斯托克斯矢量[18](Stokes)图像,包括 S0、
S1 和 S2。 其中 S0 表示总光强图像,即 I ; S1 是水平方向

和垂直方向的光强差; S2 是 45°方向和 135°方向的光

强差。

图 2　 偏振相机输出图像

Fig. 2　 Polarization
 

camera
 

output
 

image

偏振度 DOP 表示光束中偏振部分的光强度和整个

光强度之比值,偏振角 AOP 表示光矢量与入射面之间的

夹角,借助式(1)可以计算出偏振度图像和偏振角图像,
如图 3 所示。

DOP =
S2

1 + S2
2

S0

AOP = 1
2

arctan
S2

S1

ì

î

í

ï
ïï

ï
ïï

(1)

图 3　 偏振度图像及偏振角图像

Fig. 3　 Polarization
 

degree
 

and
 

polarization
 

angle
 

image

由偏振度图像和偏振角图像可知,由于人、车等目标

不属于自然目标,因此在材质上和自然背景之间有很大

区别,故被检目标和自然背景的交界处的偏振度和偏振

角会有较为明显的差异。
由于目前晴朗天气下的偏振公开数据集较少,雾霾

天气的偏振数据难以采集,故本文所构建的数据集包括

390 组雾霾天气下的偏振公开数据集[19] 和 4
 

259 组晴朗

天气下的偏振自主拍摄数据集,每组图像都包括可见光

强度图像、偏振度和偏振角图像。 本文使用图像标注工

具 LabelImg 分别对可见光强度图像和偏振度图像进行

标注。
使用标注工具对数据集进行类别标注,标注结果如

表 2 所示。
表 2　 标签统计情况

Table
 

2　 Label
 

statistics

类别 标签数量

person 11
 

012
car 13

 

477
bike 609

motorbike 2
 

572
guideopost 4

 

207

　 　 本文将晴朗天气下的数据集按照 7 ∶ 2 ∶ 1 的比例划

分训练集、验证集和测试集,雾霾天气的偏振数据全部作

为测试集,数据集情况如表 3 所示。
表 3　 数据集划分情况

Table
 

3　 Data
 

set
 

division

训练集 验证集 测试集

天气 晴朗 晴朗 晴朗 雾霾

数据集 2
 

982 852 425 390
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3　 偏振图像去雾增强处理

　 　 当环境中出现雾霾的时候,大气中漂浮着大量的液

体微粒,而一般情况下光学成像系统都是以太阳光作为

光源,每一个液体微粒就相当于一个微透镜,光线会不断

地进行反射和折射,从而导致可见光成像系统成像不清

晰。 而偏振成像受环境影响较小,适合用作雾霾天气下

的成像系统。
3. 1　 大气物理散射模型

　 　 如图 4 所示是雾霾天气下光线到达成像系统的示意

图,又叫做大气物理散射模型[18] 。

图 4　 大气物理散射模型

Fig. 4　 Atmospheric
 

physical
 

scattering
 

model

成像系统接收到的光强主要分为两个部分:1)目标

反射光,也叫做直接透射光,包含了场景中的目标信息;
2)大气光,由空中大量雾霾颗粒导致的杂散光。

其中,目标反射光 L 透过雾霾颗粒,产生了反射和折

射,本文只考虑雾霾颗粒对目标反射光的吸收作用而不

考虑散射作用,最终到达成像镜头的直接透射光 D 随着

距离成指数形式衰减:
D = Lexp( - βz) (2)

式中: β 是衰减系数, z 是目标和成像系统之间的距离。
与直接透射光不同的是,大气光经过雾霾颗粒的散

射到达成像系统,本文只考虑雾霾颗粒的单次散射,而不

考虑多次散射。 因此,到达成像系统的大气光强 A 随距

离指数增加:
A = A∞ [1 - exp( - βz)] (3)

式中: A∞ 表示无穷远处的大气光强。
定义透射率 t = exp( - βz) ,因此直接透射光 L 和大

气光 A 非相干影响的相互叠加后到达成像系统的就是总

光强 I ,可以表示为:
I = D + A = L·t + A∞ (1 - t) (4)
从式(4)可以看出雾霾环境对直接透射光的影响,

消除直接透射光强和透射率,可以得到目标反射光:

L = I - A

1 - A
A∞

(5)

因此,通过大气物理散射模型的逆推导可以得出,只
要估算出整张图像中各像素点的大气光强 A 和无穷远处

的大气光强 A∞ 就能够恢复无雾图像。 由于大气物理散

射模型中假设雾霾浓度是均匀的且只考虑雾霾粒子的单

次散射,故只适用于雾霾污染较轻的场景。
由于天空区域不存在任何目标,因此只包括大气光

A ,不包括直接透射光 D ,可以利用天空区域来估计大气

参数,具体流程如图 5 所示。

图 5　 偏振去雾增强流程

Fig. 5　 Flow
 

chart
 

of
 

polarization
 

dehazing
 

enhancement

3. 2　 提取天空区域

　 　 本文通过区域自动生长算法来对图像中的天空区域

进行自动提取。 如图 6 所示,首先手动选择一个种子点,
作为天空区域自动生长的起始点。

图 6　 区域自动生长起始点

Fig. 6　 Regions
 

automatically
 

generate
 

a
 

starting
 

point

设定天空区域强度阈值和天空区域强度均值,当像

素点的灰度值和天空区域的灰度均值相差不超过该强度

阈值时,认为该像素点属于天空区域。
提取该种子点周围的 4 个像素点,分别判断周围像

素点的灰度值是否满足强度阈值条件,若满足强度阈值

条件,则合并该像素点到天空区域,并且更新天空区域的
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灰度均值,用于下一次比较。
重复上述步骤,直到没有新的像素添加到天空区域,

此时区域自动生长结束,天空区域的二值化图像如图 7
(a)所示。

一般情况下,天空区域在图像中是连续存在的,因此

对图像进行膨胀、腐蚀处理,消除图像中的空洞,如图 7
(b)所示为图像膨胀处理后天空区域的结果图像。

图 7　 天空区域自动提取结果

Fig. 7　 The
 

sky
 

area
 

automatically
 

extracts
 

the
 

results

根据提取出的天空区域可以得出,天空区域的灰度

均值为 194. 69,即为估计的无穷远处大气光强 A∞ 。
3. 3　 偏振图像去雾

　 　 本文使用的偏振相机可以输出斯托克斯矢量图像

S0、S1 和 S2。 使用斯托克斯公式可以计算出偏振相机的

3 个线偏振角图像 I0、I45、I90,便于后续的参数计算。

I0 =
S0 + S1

2

I45 =
S0 - S1

2

I90 =
S0 + S2

2

ì

î

í

ï
ï
ïï

ï
ï
ïï

(6)

其中,由于 S0 = I0 + I90,因此 S0 图像中各像素点的强

度值相当于原始图像中的亮度。
根据式(6)以及偏振度和偏振角的定义可以得到:

p =
S2

1 + S2
2

S0

= ΔI
S0

θ = 1
2

arctan
S2

S1

ì

î

í

ï
ïï

ï
ïï

(7)

式中: ΔI = I⊥ - I‖ 。
偏振相机得到的最亮和最暗图像如图 8(a)和(b)所

示, I⊥ 表示随着相机前的偏振片旋转所能得到的最亮图

像,即雾霾颗粒对图像影响最大的图像, I‖ 表示随着相

机前的偏振片旋转所能得到的最暗图像,即雾霾颗粒对

图像影响最小的图像,可以表示为:

I⊥ =
(1 + p)S0

2

I‖ =
(1 - p)S0

2

ì

î

í

ï
ï

ï
ï

(8)

图 8　 偏振相机得到的最亮和最暗图像

Fig. 8　 The
 

brightest
 

and
 

darkest
 

images
obtained

 

by
 

the
 

polarization
 

camera

由于偏振度图像中的天空区域不存在任何目标,因
此偏振度图像中的灰度值为 0,但是由于雾霾粒子对大

气光的散射作用,导致偏振度图像中天空区域的偏振度

值并不为 0,因此可以根据偏振度图像中的天空区域的

偏振信息(偏振度和偏振角)来估算大气光偏振度 pA 这

一参数。
根据原始图像区域自动生长得到的天空区域像素位

置,对应可以得到天空区域的偏振角图像,如图 9( a)所

示。 对天空区域的偏振角图像进行像素灰度频数分布统

计,选择频数分布最大的偏振角值作为大气光偏振角

θA ,与这些偏振角频数最大的像素对应位置的偏振度图

像的偏振度,计算其平均值即为大气光偏振度 pA ,如图 9
(b)所示。

图 9　 天空区域的偏振角及频数分布最大像素点

Fig. 9　 The
 

polarization
 

angle
 

and
 

frequency
distribution

 

of
 

the
 

largest
 

pixel
 

in
 

the
 

sky
 

area

根据计算得到场景中大气光偏振角 θA 为 0. 388 2,大
气光偏振度 pA 为 0. 371 8。
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根据估算所得的大气光偏振度
 

pA 可得各像素点大

气光强 A 为:

A =
I⊥ - I‖

pA
(9)

根据式(5) 以及估算得到的无穷远处大气光强 A∞

和各像素点大气光强 A ,就可以恢复场景中的目标反射

光强,各算法的去雾效果对比如图 10 所示。

图 10　 偏振强度图像去雾效果对比

Fig. 10　 Comparison
 

of
 

defogging
 

effects
 

of
polarization

 

intensity
 

images

本文通过图像信息熵和灰度方差来对去雾增强效果

进行评价。 图像信息熵可以表示图像中灰度分布的聚集

特征所包含的信息量,即图像中平均信息量的多少,图像

信息熵越大,去雾效果越好。 图像信息熵函数为:

H = ∑
255

i
p i logp i (10)

式中: p i 表示某个灰度在图像中出现的概率。
图像灰度方差能够反映图像的高频部分的大小,图

像灰度方差越大,去雾效果越好。 图像灰度方差函数为:

std = 1
MN∑

M

i = 1
∑

N

j = 1
( I( i,j) -g- (11)

式中: M 和 N 表示图像的长和宽, I( i,j) 表示图像灰度

值, g- 表示图像灰度均值。
利用偏振信息去雾前后图像的评价结果如表 4 所

示,去雾增强图像信息熵和灰度方差均有所提升。 其中

信息熵达到了 7. 347 7,较原图像提升了 3. 4%,较自适应

直方图均衡化图像降低了 3. 06%; 灰度方差达到了

74. 879 9,较原图像提升了 40. 3%,较自适应直方图均衡

化图像提升了 19. 5%。 本文去雾增强算法的复杂度较

低,图像处理速度较快,经过计算平均每张图像的处理速

度达到 2. 334 s。
表 4　 去雾结果评价

Table
 

4　 Evaluation
 

of
 

demisting
 

results
信息熵 灰度方差

原图像 7. 109
 

1 53. 383
 

6
自适应直方图均衡化图像 7. 579

 

7 62. 643
 

9
去雾增强图像 7. 347

 

7 74. 879
 

9

3. 4　 可见光强度图像和偏振度图像融合

　 　 上述的去雾方法的前提是雾霾污染较轻,而当图像

中出现雾霾污染较重或者过曝情况时,去雾增强算法失

效。 雾霾浓度根据图像信息熵进行评价,本文设置图像

信息熵低于 7 为雾霾重度污染,高于 7 为雾霾轻度污染。
如图 11 所示,可见光强度图像中包含有较多的目标强度

信息,偏振度图像中包含有较多的目标边缘轮廓信息。
偏振度图像对于目标的强度信息较为匮乏,并且场景中

的过曝现象在偏振度图像中也有很大的改善,因此本文

将偏振度图像和强度图像进行融合。

图 11　 可见光强度图像和偏振度图像对比

Fig. 11　 Comparison
 

of
 

visible
 

light
 

intensity
image

 

and
 

polarization
 

degree
 

image

由于可见光强度图像和偏振度图像来源于同一个相

机,因此可见光强度图像和偏振度图像是严格像素对齐

的,所以不需要考虑图像之间的配准对齐问题。
本文使用的像素级融合方法是小波变换,小波变换

以傅里叶变换为基础,能够保留融合图像的细节特征,将
图像通过小波函数分解为多个分辨率层,应用不同的融

合规则融合每一层,再通过小波重构重建图像。 本文使

用的小波函数是 haar,融合规则为:高频部分采用加权平

均的方法,低频部分采用模值最大的方法。 如图 12 所

示,融合后图像既保留了可见光强度图像中目标强度信

息,又保留了偏振度图像中目标轮廓信息,提升了场景中

目标的可识别性。

图 12　 原始图像和融合后图像对比

Fig. 12　 Comparison
 

of
 

the
 

original
 

image
 

and
 

the
 

fused
 

image
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4　 实验与结果分析

　 　 为了更加直观的对去雾结果进行评价,本文将去雾

前后的图片分别作为测试集进行测试,利用训练集和验

证集训练深度学习网络并对测试集进行预测,根据预测

精度来评判去雾效果。
4. 1　 实验环境配置及评价指标

　 　 实验环境配置如表 5 所示,本文偏振图像去雾算法

在 MATLAB2018 上实现,CPU 配备 AMD8 核 3700X,64 G
内存,深度学习算法使用 Pytorch3. 8 实现,在两块 RTX

 

TITAN 显卡上进行网络模型训练,模型训练轮次 epoch
设置为 300。

表 5　 实验环境配置

Table
 

5　 Experimental
 

environment
 

configuration

配置

CPU 处理器 AMD
 

3700X

GPU 处理器 2∗RTX
 

TITAN

操作系统 Ubuntu20. 04

并行计算库 Cuda10. 1+Cudnn7. 4

深度学习框架 Pytorch

　 　 YOLO
 

v5 深度学习网络[20] 包括不同大小的网络模

型,包括 YOLO
 

v5s、YOLO
 

v5m、YOLO
 

v5l、YOLO
 

v5x,本
文选择 YOLO

 

v5s 进行网络训练,batch_size 设置为 40,初
始学习率设置为 0. 001。

为了验证去雾效果对目标检测的有效性,客观地衡

量目标检测模型的性能,本文通过均值平均精度 mAP、
平均精度 AP、精确率 Precision 及召回率 Recall 来评估网

络模型的识别能力。 根据真实标签以及网络模型的预测

结果可以得到真正 TP、真负 TN、假正 FP 和假负 FN,通
过式可以计算得到 Precision 和 Recall。

Precision = TP
TP + FP

Recall = TP
TP + FN

ì

î

í

ï
ï

ï
ï

(12)

Precision 可以理解为模型识别正确且确实是正确的

样本占模型认为正确的样本的概率,Recall 可以理解为

模型认为是正确且确实是正确占所有正确样本的概率。
AP 为某类目标 Precision-Recall 曲线和横轴所围成的面

积大小,面积越大,AP 值越大,模型对该类的目标检测效

果越好。 mAP 表示所有类别的平均精度,使用 mAP 可

以反映网络模型的整体识别能力。
4. 2　 偏振去雾实验结果与分析

　 　 对测试集的图像经过偏振图像去雾增强操作后,分

别将处理前和处理后的数据集送入深度学习网络进行测

试,IOU 阈值设置为 0. 6,目标置信度阈值设置为 0. 3,部
分测试结果对比如图 13 所示。

图 13　 偏振图像去雾目标检测效果对比

Fig. 13　 Comparison
 

of
 

polarization
 

image
dehazed

 

object
 

detection
 

effect

如表 6 所示,原始图像测试集经过目标检测网络测

试后,正确识别出 5 辆车、1 辆自行车,存在人和车的漏

检。 自适应直方图均衡化图像测试集经过目标检测网络

测试后,正确识别出 8 辆车、1 个人,自行车误识别为摩

托车。 偏振去雾增强后的图像测试集经过目标检测网络

测试后,正确识别出 8 辆车、1 辆自行车和 1 个人,且置信

度均有所提升。

表 6　 去雾前后目标检测各目标置信度
Table

 

6　 Confidence
 

of
 

object
 

detection
before

 

and
 

after
 

dehazing
目标 原始图像 自适应直方图均衡化 去雾增强后

person 未识别 0. 675
 

5 0. 650
 

4
bike 0. 817

 

4 误识别 0. 899
 

6
car1 0. 965

 

4 0. 969
 

6 0. 968
 

5
car2 0. 959

 

2 0. 965
 

2 0. 965
 

9
car3 0. 935

 

5 0. 967
 

4 0. 965
 

2
car4 0. 926

 

6 0. 939
 

5 0. 944
 

0
car5 0. 645

 

0 0. 768
 

7 0. 870
 

3
car6 未识别 0. 885

 

8 0. 701
 

8
car7 未识别 0. 825

 

9 0. 905
 

9
car8 未识别 0. 819

 

8 0. 453
 

4

　 　 将晴朗天气和雾霾天气图像共同组成的 815 张图像

作为测试集进行测试。 由于偏振去雾后的图像质量更

高,因此具有更高的 mAP。 如图 14、15 和 16 所示,去雾

增强后测试集的 mAP 较原始图像提升了 12. 69%,较直

方图均衡化测试集提升了 1. 76%,其中车的识别准确率

达到了 73%,较原始图像测试集提升了 43%;人的识别准

确率达到了 88%,较原始图像测试集提升了 9%,较直方

图均衡化测试集提升了 8%;路牌的识别准确率达到了

43%,较原始图像测试集提升了 18%。
4. 3　 可见光强度图像和偏振度图像融合结果及分析

　 　 可见光强度图像和偏振度图像使用小波变换方法进
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图 14　 原始图像测试集 mAP
Fig. 14　 The

 

mAP
 

on
 

the
 

original
 

image
 

test
 

dataset

图 15　 自适应直方图均衡化测试集 mAP
Fig. 15　 Adaptive

 

histogram
 

equalization
 

test
 

set
 

mAP

图 16　 去雾后测试集 mAP
Fig. 16　 The

 

mAP
 

on
 

the
 

test
 

dataset
 

after
 

dehazing

行图像融合后,分别使用融合前后的数据集作为训练集

来进行网络训练,IOU 阈值设置为 0. 6,目标置信度阈值

设置为 0. 3。 将晴朗天气下的原始图像与融合后的图像

分别作为测试集进行测试,mAP 测试结果如图 17 和 18
所示。

融合前后的测试集结果显示,所有目标类别的平均

识别精度提升 7. 1%,其中人识别精度提升 24%,自行车

识别精度提升 5%,车识别精度提升 4%,摩托车识别精度

图 17　 融合前测试集 mAP
Fig. 17　 Test

 

set
 

mAP
 

before
 

fusion

图 18　 融合后测试集 mAP
Fig. 18　 Test

 

set
 

mAP
 

after
 

fusion

提升 2%。
部分测试结果如图 19 所示,原图像由于空气中存在

的雾霾粒子的干扰,训练出的深度学习网络对场景中的

目标车辆无法识别,而融合后的图像目标车辆的轮廓更

加清晰,且图像无过曝现象产生,利用融合后的图像重新

训练的深度学习网络能够正确识别到目标车辆,目标检

测效果有明显提升。

图 19　 目标检测效果对比

Fig. 19　 Comparison
 

of
 

object
 

detection
 

effects

5　 结　 论

　 　 本文针对雾霾天气条件下的多目标检测任务,基于
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偏振成像的优势,提出了基于偏振信息的雾霾天气下的

图像增强方法。 对于雾霾轻度污染的场景,偏振相机能

够获取场景中的偏振信息,通过区域自动生长算法提取

图像中的天空区域,从而获取各像素点大气光强和无穷

远处大气光强,借助大气物理散射模型实现图像去雾处

理;对于雾霾重度污染的场景,对可见光强度图像和偏振

度图像进行小波变换重构,既保留了目标强度信息,又增

强了目标轮廓信息,对雾霾重度污染或者过曝的场景都

有很好的目标识别效果。 根据测试结果,该方法在某些

场景下仍有一定的局限,例如在雾霾较浓、目标距离较远

时检测结果仍有一定偏差。 在后续的研究工作中,会尝

试利用深度学习的方法来进行偏振度图像和可见光强度

图像的融合,来提升目标识别精度和速度。
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