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Sparse light fields dense reconstruction combining
depth cues and geometric structures

Li Mei Zhang Xudong Sun Rui Fan Zhiguo

(School of Computer and Information, Hefei University of Technology, Hefei 230601, China)

Abstract: The four-dimensional information of space and angle can be obtained by one-time imaging of light field. The existing methods
are mostly used for the light field image of small baseline scene in the angular super-resolution reconstruction, and there are some
phenomena such as blur when reconstructing the large baseline scenes. At the same time, the reconstruction effect of the occlusion area
is poor in the process of light field reconstruction, and the long-distance spatial relationship is difficult to capture. To solve this problem,
a sparse light field intensive reconstruction method combining depth clues and geometric structure is proposed. This method uses spatial
pyramid pool to extract multi-scale features, which can preserve the texture details and high frequency information of images better. By
introducing void convolution and dense connection in the depth estimation module, the receptive field is expanded and the accuracy of
depth estimation of large baseline scene is improved. The view refinement module is used to optimize the image and reconstruct the
occlusion area while preserving the parallax structure. Experimental results show that the proposed method solves the problem of large-
baseline scene optical field reconstruction well, and exceeds other algorithms in the large-baseline scene data set, with PSNR increased
by 2 dB and SSIM increased by 0. 018. The quality of reconstructed images is superior to the existing algorithms.
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Fig. 1 The algorithm framework
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Fig.2 The feature extraction module framework
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Fig.3 The depth estimation module framework
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Fig.5 The process of angular super-resolution reconstruction
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Table 1 The influence of the feature extraction module, depth estimation module and refinement( PSNR/SSIM )
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Fig. 6 Qualitative comparison of methods on a dataset (PSNR/SSIM)
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PSNR “FH36 00 1 2 dB, SSIM ~F-34948 /i1 1 0. 018, [ iR %E
FRIIASCOT A KI5 i B 4 A i 3%
B, HEETIA TP 2 NEL gm0 e E il )y

U AR SCHR B 75 R NS TR SE L T 5 T g AR
AT R AR L TR X R IR LD H A Y baseline
D71 AR SCHETRBE A 1 I BB X0 TR 88 PRAS 2 B8 AR A4 ith
PR B DAL B B X A2 AR 45 [ R R AT 1 itk — 20 Ak
B AR SCHR B 7 ik AR R I 5 T U T
LBy E A

®2 BFHEEHCIEIES EMEE LR (PSNR/SSIM)
Table 2 Quantitative comparison of methods on HCI datasets ( PSNR/SSIM )
PR ML SCHR[25] SCHR[ 26] SCHR[11] SCHR[ 14] SCHR[7] A3
Bedroom [-1.7,2.2] 39.15/0. 961 39.38/0.959 38.22/0. 957 38.77/0.959 41.98/0. 975 42.76/0.978
Bicycle [-1.7,1.7] 30. 84/0. 924 31.73/0.923 32.92/0. 945 32.37/0. 935 34.03/0. 954 35.01/0. 962
Herb [-3.1,1.8] 30. 80/0. 831 31.42/0. 839 31.05/0. 836 31.70/0. 847 32.76/0. 882 35.53/0. 936
dishs [-3.1,3.5] 26.59/0. 876 26.35/0. 875 27.00/0. 863 28.56/0. 893 29.63/0.938 32.08/0. 959
Avg. over 4 light fields 31. 84/0. 898 32.22/0. 899 32.30/0. 900 32.85/0.909 34.60/0. 937 36.35/0. 959
®3 ‘FHEE HCI old HiEE EHEELLE (PSNR/SSIM)
Table 3 Quantitative comparison of methods on HCI old datasets (PSNR/SSIM )
SR 2O SCHR[25] SCHR[ 26 SCHR[11] SCHR[ 14] SCHR[ 7] AL
buddha [-0.85,1.54] 42.91/0. 986 42.67/0. 985 44.03/0. 988 42.47/0. 985 45.65/0. 991 46. 82/0. 993
buddha2 [-0.70,1.20] 38.03/0. 966 40. 26/0. 970 40.61/0.973 39.51/0.969 41.48/0.975 41.98/0. 977
stillife [-2.71,2.56] 24.63/0.792 25.10/0. 824 24.14/0.771 24.78/0.797 25.67/0. 854 33.35/0. 942
papillon [-1.17,0.89] 41.42/0. 981 39.89/0. 978 44.73/0. 986 43.04/0. 983 45.51/0. 987 46.07/0. 988
monasroom [-0.79,0.72] 41.06/0. 983 38.43/0. 968 44.92/0. 989 43.09/0. 985 45. 88/0. 990 46.55/0. 991
Avg. over 5 light fields 37.61/0.942 37.27/0. 945 39.69/0. 941 38.58/0. 944 40. 84/0. 960 42.95/0. 978
F4 &FETE DLFD HiRE LR EE L (PSNR/SSIM )
Table 4 Quantitative comparison of methods on DLFD datasets ( PSNR/SSIM)
JeE B 2T SCHR[ 25 SCHR[26] SCHR[11] SCHR[14] SCHR[ 7] AL
Black & White [ -1.62,0.10] 33.73/0.969 29.46/0.933 29.31/0.923 30. 62/0. 925 34.69/0.974 39.43/0. 986
Furniture [-2.06,1.92] 36.62/0. 949 36.79/0. 936 38.36/0. 948 36.73/0.935 40. 62/0. 962 42.20/0.970
White Roses [-1.52,3.38] 35.60/0. 962 36.23/0. 956 36.27/0. 960 36.28/0. 960 40. 59/0. 981 41.93/0. 984
Avg. over 39 light fields 32.35/0.911 31.77/0. 896 31.65/0. 892 32.53/0. 899 34.83/0.933 36.21/0. 949
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