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摘　 要:针对变分模态分解(variational
 

modal
 

decomposition,
 

VMD)的特征提取性能受到参数影响的问题,以及故障状态跟踪的

实时性较差的问题,提出一种状态预警线构造方法和自适应 VMD 方法并将其用于机械零件的故障检测。 首先,提取机械零件

全寿命振动信号的退化特征,基于 2σ 准则构造状态预警线来跟踪机械零件的退化状态并检测故障预警点。 然后,引入能量熵

和互信息构造适应度函数,通过蚱蜢优化算法(grasshopper
 

optimization
 

algorithm,
 

GOA)构造自适应 VMD 模型来检测预警点附

近机械零件的故障状态。 结果表明,提出的状态预警线能更及时有效地检测出故障预警点,自适应 VMD 能更准确地检测出机

械零件故障,具有良好的应用价值。
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Abstract:
 

Aiming
 

at
 

the
 

problem
 

that
 

the
 

feature
 

extraction
 

performance
 

of
 

variational
 

modal
 

decomposition
 

( VMD)
 

is
 

affected
 

by
 

its
 

parameters
 

and
 

the
 

poor
 

real-time
 

performance
 

of
 

fault
 

state
 

tracking,
 

an
 

early
 

warning
 

approach
 

and
 

adaptive
 

VMD
 

method
 

are
 

proposed
 

and
 

applied
 

to
 

mechanical
 

part
 

fault
 

detection.
 

Firstly,
 

the
 

degradation
 

characteristics
 

of
 

the
 

full-life
 

vibration
 

signal
 

of
 

mechanical
 

parts
 

are
 

extracted,
 

and
 

then
 

the
 

state
 

warning
 

line
 

is
 

constructed
 

based
 

on
 

the
 

2σ
 

criterion.
 

Through
 

the
 

early
 

warning
 

line,
 

the
 

degradation
 

state
 

of
 

mechanical
 

parts
 

can
 

be
 

tracked
 

and
 

the
 

fault
 

early
 

warning
 

points
 

can
 

be
 

detected.
 

Then,
 

the
 

energy
 

entropy
 

and
 

mutual
 

information
 

are
 

introduced
 

to
 

construct
 

the
 

fitness
 

function,
 

and
 

an
 

adaptive
 

VMD
 

model
 

is
 

constructed
 

by
 

grasshopper
 

optimization
 

algorithm
 

(GOA)
 

to
 

detect
 

the
 

fault
 

state
 

of
 

mechanical
 

parts
 

near
 

the
 

early
 

warning
 

point.
 

The
 

results
 

show
 

that
 

the
 

proposed
 

state
 

early
 

warning
 

line
 

can
 

detect
 

the
 

fault
 

early
 

warning
 

points
 

timelier
 

and
 

more
 

effectively,
 

and
 

the
 

adaptive
 

VMD
 

can
 

detect
 

the
 

faults
 

of
 

mechanical
 

parts
 

more
 

accurately,
 

which
 

have
 

good
 

application
 

value.
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0　 引　 言

　 　 随着我国工业水平和智能制造的发展,生产设备逐

渐向大型化、复杂化和智能化发展。 轴承是旋转类机械

中最主要的零部件,单向阀是高压隔膜泵中最主要的动

力部件,这些零件长时间工作在恶劣、复杂的运行环境

下,因此极易受到损坏。 然而,故障初期振动冲击比较模
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糊,异常状态信息不明显,缺乏对故障程度的及时掌控导

致诊断滞后,造成严重的失效风险。 此外,受到复杂运行

工况、背景噪声的影响,轴承和单向阀等零件的运行状态

监测和故障诊断可靠性不高,因此研究零件状态跟踪及

故障检测方法具有重要意义。
在机械零件状态跟踪及故障检测过程中,首先需要

研究具有单调性、鲁棒性和趋势性的状态跟踪方法,即通

过有效的退化特征来跟踪机械零件的运行状态,然后需

根据退化特征的趋势确定故障预警时间点,最终进一步

确定预警时间点附近零件是否故障。 因此,退化特征的

提取、状态预警线的构造、故障检测方法研究是状态跟踪

及故障检测的重点。 Shankar 等[1] 提取轴承的 Kullback-
Leibler 散度退化特征,并用高斯过程对轴承的退化趋势

进行 95%置信区间的预测。 Kumar 提取轴承香农熵、排
列熵 ( permutation

 

entropy,
 

PE) 和近似熵 ( approximate
 

entropy,
 

AE)趋势特征,通过单调性、趋势性和鲁棒性选

取有效特征后利用 ARD 指数核上的 GPR 对退化趋势进

行 95% 置信区间的预测。 Mostafa 等[2] 通过样本熵

(sample
 

entropy,
 

SE)、PE 及散布熵( dispersion
 

entropy,
 

DE)表征齿轮和轴承退化特征,表明 DE 抗噪性更强且速

度更快。 Rostaghi 提取 DE 表征轴承退化特性,并分析嵌

入维数、类别数、时延和信号长度对退化特征的影响,表
明 DE 比 SE 和 PE 更稳定且速度更快。 因此,复杂度和

非线性分析方法在零件退化特征提取中的应用越来越

多,且熵方法的状态跟踪性能越来越好。 然而,状态预警

线的构造关系到故障状态监测的实时性和有效性,张龙

等[3] 提取信号的 Renyi 熵并输入 K-medoids 模型得到隶

属度退化特征,然后使用 3σ 准则作为自适应报警阈值。
于重重等[4] 提取轴承的 T 分 布 随 机 近 邻 嵌 入 ( T-
stochastic

 

neighbor
 

embedding,
 

T-SNE)流形并将其 SE 特

征作为退化特征,将高于或低于正常阶段特征阈值 5%的

点作为状态预警点能提前 50 min 检测到轴承故障。 吕明

珠等[5] 提出包络谐噪比特征避免了传统特征缺乏敏感性

和鲁棒性的问题,通过 4σ 准则跟踪风力机轴承的故障预

警点能提前检测出故障状态。 杨潇谊等[6] 将轴承健康数

据和测试数据的散布熵之间的余弦欧氏距离作为退化指

标,通过切比雪夫不等式计算的余弦欧氏距离阈值来检

测轴 承 故 障。 陈 剑 等[7] 提 出 基 于 变 分 模 态 分 解

(variational
 

modal
 

decomposition,
 

VMD)和自回归滑动平

均(auto-regressive
 

moving
 

average,
 

ARMA)的轴承退化预

警方法,通过 VMD 相对能量熵的 3σ 准则来检测故障。
王玉静等[8] 提出结合卷积神经网络( convolutional

 

neural
 

networks,
 

CNN ) 和 长 短 时 记 忆 网 络 ( long
 

short-term
 

memory,
 

LSTM)的轴承寿命预测方法,将 1 作为 LSTM 趋

势指标阈值来检测故障。 徐仁义等[9] 提出基于均方谐噪

比和正则化粒子滤波( regularized
 

particle
 

filter,
 

RPF) 的

寿命预测方法,将 u+6σ 作为报警阈值来判定退化阶段。
张龙等[10] 提出特征相似比来表征轴承性能退化趋势,并
通过 u+3σ 作为阈值来判断轴承状态。 采用显式动力学

的轴承性能退化评估指标构建故障检测方面主要使用频

率检测法检测故障状态,具体为先抑制振动噪声或增强

冲击成分,然后提取异常频率来检测故障状态。 其中,
VMD 因具备完备的数学支撑和良好的时频特性而用于

振动信号分析。 然而,VMD 参数设置不合理导致的模态

混叠间接导致 VMD 时频特征表征性能较差、噪声抑制效

果不佳。 Li 等[11] 通过包络信号的峭度值来依次确定最

佳模态数和惩罚因子,分析包络功率谱来检测轴承故障。
Kumar 等[12] 构建了内核互信息适应度, 用遗传算法

(genetic
 

algorithm,
 

GA)优化 VMD 的模态数和惩罚因子,
最终通过最小化互信息的模态的包络来识别故障缺陷。
Zhou 等[13] 用平均值构建适应度函数,通过鲸鱼算法

(whale
 

algorithm,
 

WOA)求解 VMD 参数并通过多点最优

最小熵反褶积提取轴承的故障特征。 Zhu 等[14] 引入加权

峭度指数构造目标函数并用人工蜂群算法( artificial
 

bee
 

colony,
 

ABC)优化 VMD 参数,通过 Teager 能量算子解调

敏感模态来诊断轴承故障。 然而,粒子群算法、WOA 和

ABC 等算法易陷入局部最优,且目标函数构造直接影响

算法的优化性能。 2017 年 Saremi 等[15] 提出蚱蜢优化算

法(grasshopper
 

optimization
 

algorithm,
 

GOA) 并证明其相

比于粒子群算法 ( particle
 

swarm
 

optimization,
 

PSO) 和

WOA 等具有更好的性能,因此本文基于能量熵和互信息

构造适应度函数并通过 GOA 优化 VMD 参数,最终抑制

振动噪声并检测零件故障。
综上,为跟踪机械零件状态演化过程,基于 2σ 准则

构造状态预警线,提高状态跟踪的实时性和有效性。 为

检测故障预警点附件零件的故障状态同时解决 VMD 参

数设置的随机性问题,构造自适应 VMD 模型并通过频率

异常确定预警点附件零件的故障状况,提出一种基于自

适应 VMD 的状态跟踪及故障检测方法。

1　 自适应变分模态分解

1. 1　 变分模态分解

　 　 Dragomiretskiy 等[16] 提出的 VMD 可将序列分解为个

有限带宽的模态,并使重构时具备频谱稀疏性。 VMD 中

固有模态函数( intrinsic
 

mode
 

function,
 

IMF)定义为一组

调幅 调 频 信 号, 比 经 验 模 态 分 解 ( empirical
 

mode
 

decomposition,
 

EMD)中极值点和过零点相差 1 的定义更

严谨。
uk( t) = Ak( t)cos[ϕk( t)] (1)
其中, Ak( t) 为瞬时幅值, ωk( t): =ϕ′k( t) 为瞬时频

率, ϕk( t) 为相位。 [ t - δ,t + δ],δ≈ 2π /ϕ′k( t) 时间间隔
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内, uk( t) 为 Ak( t) 和 ϕ′k( t) 的谐波信号。 变分的目的在

保证重构信号 f 前提下,求 k 个模态 uk( t) 且使各模态的

估计带宽之和最小。 每个 uk 的带宽为:
1)用 Hilbert 变换计算出各 uk 的解析信号,并求取单

边频谱:
(δ( t) + j / πt)·uk( t) (2)

2)将各模态 uk 的频谱乘以 e
-jωkt,将估计的 uk( t) 的

中心频带调制到基频带:

[(δ( t) + j / πt)·uk( t)]e
-jωkt (3)

3)根据调制信号梯度的 L2 范数的平方来估计每个

uk 带宽,构建变分模型:

min
{uk},{ωk}

∑
k

‖∂t[(δ( t) + j / πt)·uk( t)]e
-jωkt‖2

2{ }

s. t. ∑
k
uk = f (4)

其中, {uk}: = {u1,…,uK} 和 {ωk} = {ω1,…,ωK}
为 VMD 估计的 K 个模态及其相应的中心频率。 引入增

广拉格朗日函数(5),转化为非约束变分问题。

L({uk},{ωk},λ):= α∑
k

‖∂t (δ(t) + j
πt

)·uk(t)
é

ë
êê

ù

û
úú e

-jωkt‖2
2 +

‖f( t) - ∑
k
uk( t)‖2

2 + 〈λ( t),f( t) - ∑
k
uk( t)〉

(5)
其中,惩罚项 α 保证了重构精度,拉格朗日乘子 λ 保

证了上述约束的顺利执行。 式( 4) 的求解等价于更新

un+1
k 、ωn+1

k 、λn+1 来求式(5)的鞍点,更新方式如下:

ûn+1
k (ω) =

f̂ (ω) - ∑
i≠k

û i(ω) +λ̂(ω) / 2

1 + 2α(ω - ωk)
2 (6)

ωn+1
k = ∫∞

0
ω | ûk(ω) | 2dω / ∫∞

0
| ûk(ω) | 2dω (7)

λ̂n+1(ω) =λ̂n(ω) + f̂ (ω) - ∑
K

k = 1
ûn+1
k (ω)( ) (8)

其中, n 为迭代次数, 为保真系数, ^ 为傅里叶变

换。 鞍点的迭代可参考文献 [ 16],满足 ∑
k

‖ ûn+1
k -

ûn
k‖

2
2 / ‖ûn

k‖
2
2 < ε 时,可得到各 ûk 和 ωk ,傅里叶逆变换

可以得各 uk 。
1. 2　 自适应变分模态分解

　 　 VMD 中模态数大于有效的子信号数称为过分解,反
正为欠分解。 凭经验设定 VMD 模态数和惩罚项难免导

致过分解和欠分解。 设置过小,当惩罚项较小时某些模

态包含在其他模态中,当较大时某些模态作为噪声丢

弃。 设置过大,当较小时分解出噪声,当较大时模态发

生混叠或重复。 设置过小时,噪声构成一个或若干个

模态,分解出的模态具有较宽的谱密度;设置过大时,
主要的模态由两个或若干个模态共享且这些模态的中

心频率重合。

为解决模态和惩罚项设置不合理导致的噪声和模态

混叠问题,提出自适应 VMD 并将其用于机械零件早期故

障检测。 自适应 VMD 故障检测模型如图 1 所示。

图 1　 基于自适应 VMD 的故障检测模型流程

Fig. 1　 Flow
 

chart
 

of
 

fault
 

detection
model

 

based
 

on
 

adaptive
 

VMD

1)实时采集机械零件振动信号,将待测信号 x( t) 输

入目标函数,初始化 K 和惩罚项 α 的上界 ubd 和下界 lbd

为 K ∈ [2,10] 和 α ∈ [1
 

000,10
 

000] 、搜索代理为 N =
30,最大迭代次数为 M = 10,初始化得到蚱蜢群 X i( i = 1,
2,…,N) 。 将初始蚱蜢群的适应度进行升序排列,得到

当前的最佳适应度及对应的最佳位置即最佳参数
 

Td

(

,构
造的适应度模型为:

步骤 1) 每次迭代通过 VMD 分解传入的振动信号

x( t) ,计算 x( t) 分解得到的各模态 uk(n) 的能量熵互信

息(energy
 

entropy
 

mutual
 

information,
 

EEMI)指标:
EEMIk = EEk·MIk (9)
当零件的运行状态发生改变时,振动信号的幅值、频

谱、复 杂 度 及 相 关 性 等 发 生 变 化。 能 量 熵 ( energy
 

entropy,
 

EE)不仅能反映振动信号频谱的能量分布,而且

能够表征能量在不同中心频率的模态中的转移,在 EEMI
中 EE 可视为互信息( mutual

 

information,
 

MI) 的权重。
EE 计算如下:

EEk =- ∑
K

k = 1
(Ek / ∑

K

k = 1
Ek)ln(Ek / ∑

K

k = 1
Ek) (10)

Ek = ∑
N

n = 1
| uk(n) | 2 (11)

其中, uk(n)(k = 1,…,K) 为不同频带的模态 IMF,
Ek(k = 1,…,K) 为不同频带的 IMF 的能量分布。
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MI 能度量原信号 x( t) = f 与分解所得各 uk(n) 间的

依赖性和相关程度,MI 比相关系数更有效[17] 。
MIk(uk;f) =

∑
f(n)∈f

∑
uk(n)∈uk

p(uk(n),f(n))log
p(uk(n),f(n))

p(uk(n))p( f(n))( ) (12)

其中, uk 与 f包含 N个离散点, p(uk(n),f(n)) 是 uk

与 f 的联合概率分布函数, p(uk(n)) 和 p( f(n)) 分别为

uk 与 f 的边缘概率分布函数。
步骤 2)经过每次迭代,计算信号 x( t) 分解后所得的

适应度,适应度函数构造如下:

fitness = min
γ = {K,α}

{ - ∑
2

i = 1
EEMIi},

s. t. K ∈ [2,10],α ∈ [1
 

000,10
 

000] (13)

其中, fitness 表示适应度, EEMIi 是 VMD 分解模态

的能量熵互信息指标, γ = (K,α) 为待优化的参数对。
在本文中模态数 K 为介于[2,7]间的整数,惩罚项 α 为

介于[1
 

000,10
 

000]间的整数,前两个模态的 EEMI 和为

优化目标。
2)每次迭代更新 γ (即当前蚱蜢位置)时,对输入的

信号 x( t) 进行分解并得到其适应度 fitness,保存当前最

佳适应度及位置
 

Td

(

,即保存当前最小适应度和其对应的

参数对 γ = (K,α) 。 第 2 次迭代后,按照下列模型来更

新蚱蜢群位置:
X i = S i + G i + A i (14)

S i = ∑
N

j = 1,j≠i
s(d ij)

 

d ij

(

G i =- g
 

eg

(

A i = u
 

ew

(

ì

î

í

ï
ïï

ï
ïï

(15)

其中, X i 为第 i 只蚱蜢位置, S i 为群居影响因子, G i

表示第 i 只蚱蜢的重力, A i 为风平流。 N 为蚱蜢群数量,

d ij 为第 i与第 j只蚱蜢之间的距离,即 d ij =| x j - x i | ;
 

d ij

(

=
(x j - x i) / d ij 为从第 i 只到第 j 只蚱蜢的一个单位向量, s
为一个定义群居能力强度的函数,如式(16)所示, g 为万

有引力常数,
 

eg

(

为地心引力方向的单位向量, u为常数漂

移,
 

ew

(

为风向单位向量。

s( r) = fe
-r
l - e -r (16)

其中, f 为吸引力强度, l 为吸引力的长度尺度。
将式(15)和(16)代入式(14)可扩展为:

X i = ∑
N

j = 1,j≠i
s( | x j - x i | )

x j - x i

d ij

- g
 

eg

(

+ u
 

ew

(

(17)

因为很多蚱蜢个体快速到达舒适区,而此时蚱蜢种

群还没能收敛到最优位置,所以该模型不能直接用于

VMD 的优化问题。 由于运用于种群的模型是在自由空

间中的,因此不考虑重力且设风向总朝向被优化目标
 

Td

(

,改进的位置更新方式为:

Xd
i = c ∑

N

j = i,j≠i
c
ubd - lbd

2
s( | xd

j - xd
i | )

x j - x i

d ij
( ) +

 

Td

(

(18)
其中, ubd、lbd 分别为 D 维搜索空间的上界和下界,

 

Td

(

是当前目标函数最优解,外部参数 c 是自适应系数,类
似于 PSO 中的惯性权重,它有效平衡了目标周围蚱蜢群

体的勘探和开发能力,内部的参数 c 是收缩吸引区、舒适

区和排斥区的递减系数。 为了平衡勘探及开发能力,参
数 c 需要随迭代次数增加而减少。 该机制减小了舒适

区,增强了开发能力。

c = cmax - m
cmax - cmin

M
(19)

其中, m 是当前迭代次数, M 是最大迭代次数, cmax 、
cmin 分别为自适应系数的最大值与最小值。 本文中 cmax

和 cmin 分别取 1 和 0. 000 04[15] 。
3)将每个蚱蜢群内的蚱蜢间的距离标准化至[1,4]

内,然后根据改进的式(18)更新当前蚱蜢位置 Xd
i ,即当

前参数对。
4)若找到更优解(即最优参数对),则更新最优适应

度和位置
 

Td

(

(参数对),同时 m = m + 1,接着判断是否终

止,若是则输出最优个体位置并结束, 否则, 重复步

骤 2) ~步骤 4)。
5)得到 VMD 的最佳模态数 K 和惩罚项 α 后,通过

自适应 VMD 分解机械零件振动信号 x( t) ,并将峭度值

(Kurt)最大的模态 IMF 作为敏感模态;
6)通过 Hilbert 包络解调[18] 提取敏感模态的调制特

征或故障特征频率来检测机械零件故障。

2　 基于自适应 VMD 的故障检测

2. 1　 状态预警线构造

　 　 为了保障机械设备的高效、连续运行,需要对轴承等

易损件进行频繁的检修和更换。 检修和更换策略的制定

需要预先检测机械零件的故障程度和故障状态。 故障检

测包括:1)采集零件当前 K 时间点的振动信号并提取当

前故障特征,根据特征与故障程度的映射关系可确定故

障状态;2)随着时间推移能得到随时间变化(k = 1,2,…,
K)的特征曲线,根据特征曲线能跟踪并检测机械零件的

故障程度;3)若在每个时间点 k 处均通过自适应 VMD 检

测机械零件故障则效率低下,因此基于 2σ 构造故障预警

线并检测故障预警点。 故障预警线构造如下:
设近似正态分布的随机序列的均值为 μ ,方差为
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σ 2,则值分布于 (μ - 3σ,μ + 3σ) 的概率为 99. 74%,分
布于 (μ - 2σ,μ + 2σ) 的概率为 95. 44%,若超出此范围

则认为状态发生异常或者跳变。 假设同一类退化特征或

故障特征符合一定的正态分布[19] ,则根据以上分析将

μ ± 2σ 作为故障阈值点。 若机械零件连续多个时间点

的故障特征或退化特征越过 2σ 范围,则认为零件的运行

状态发生较大改变。 通常将均方根( root
 

mean
 

square,
 

RMS)、峭度(Kurt)等作为故障特征或退化特征,来跟踪

机械零件的故障状态演化过程,相应的预警线称为 RMS
预警线、Kurt 预警线。 为了更准确有效地跟踪机械零件

的状 态 变 化, 本 文 用 滑 动 散 布 熵 ( sliding
 

dispersion
 

entropy,
 

SDE)及 SDE 预警线跟踪机械零件状态变化,
SDE 基于滑动散布熵[20] ,其不在本文讨论的范围内。

根据第 k(k = 1,…,K) 个实测的特征值,可构造一条

随时间变化的故障预警线,若特征近似单调减则考虑阈

值下限,若特征单调增则考虑阈值上限,构造的阈值线

如下:
Th(t) = mean(Feature(1:tk)) ± 2std(Feature(1:tk)),
k = 1,2,…,K (20)
假设 k = 1,…,s1 时间段为正常状态,对 Featurek,k =

1,…s1 计算阈值下限。 对 s1 时间点后的时间点 s2,对比

s2 时间点的 Feature(1:ts2 ) 与 s1 时间点的 Th( ts1 ) ,若

Feature(1:ts2 ) 在 Th( ts1 ) 范围内,则认为机械运行状态

未改变,若 s1 时间点后连续多个时间点的 Feature 超过自

适应阈值,则认为状态发生改变,其中第一个故障跳变点

为故障预警点,以式(20)依次确定每个时间点的阈值得

到状态预警线。
2. 2　 基于自适应 VMD 的故障检测流程

　 　 机械零件的故障状态跟踪与故障检测关系到维修、
更换计划的制定。 若每个时间点均进行故障的检测及判

别,则故障检测效率低,且受到噪声影响可靠性不高。 因

此,本文提出基于 2σ 的状态预警线构造方法,随着时间

点的推进根据该方法来跟踪故障预警点。 若没有检测到

预警点则继续跟踪下一时间点的特征状态,避免重复故

障检测带来的时间浪费;若检测到故障预警点,则构造更

有效的自适应 VMD 检测模型来进一步检测预警点附近

机械零件的故障状态。 状态预警及故障检测流程如图 2
所示。

1)通过分段间隔采样方式采集机械零件第 k(k = 1,
…,K) 个时间点的振动信号,即由正常到失效的全寿命

振动信号;
2)取出第 k 个时间点振动信号的前 N 个点,计算前

N 个点的特征。 当时间点 k 持续增大到 K 时,得到一条

连续的特征跟踪曲线。 如果特征毛刺或噪声过多,可通

过局部加权回归散点平滑(LOWESS)去除毛刺。 因为在

故障演化中,RMS 与振动能量相关,Kurt 对故障冲击敏

图 2　 状态预警及故障检测流程

Fig. 2　 Flow
 

chart
 

of
 

status
 

early
 

warning
 

and
 

fault
 

detection

感,熵能表征振动信号的动力学特性,此外时域幅值、频
域内不同频段的谱峰、时频域能量随故障演化产生不同

的分布[21] ,因此分别将 RMS、Kurt、SE、PE、DE 和平滑

SDE 作为“ 全寿命特征” 来分析状态预警线构造的有

效性。
3)对于上述的任意一种特征,根据式(20)更新状态

预警线,检测零件状态是否改变。 若特征没有超过 2σ 故

障预警点,则大概率不可能发生故障,不需要通过自适应

VMD 检测故障状态,而是继续求取 K+1 时间点特征并更

新状态预警线,直到检测到预警点为止。
4)若状态预警线超过故障预警点,则通过自适应

VMD 进一步检测故障状态。 若自适应 VMD 未检测到零

件故障,应该制定更频繁的检修计划防止零件损坏,若已

检测到故障状态,应该立即进行维修和更换,以免造成次

生故障。

3　 实验验证及结果分析

3. 1　 轴承故障检测及实验分析

　 　 为了跟踪轴承的故障演化过程并检测故障状态,同
时验证提出的自适应 VMD 方法的有效性,用辛辛那提大

学智能维护系统( intelligent
 

maintenance
 

system,
 

IMS)数

据[22] 进行实验分析。 在弹簧的 26. 671
 

kN 径向荷载下,4
套 Rexnord

 

ZA-2115 型轴承以 2
 

000
 

r / min 的转速转动,
其中滚柱 z 为 16 个,节径 D 为 71. 501 mm,滚柱直径 d 为

8. 407 4 mm,接触角 α 为 15. 17°,两个 PCB
 

353B33 传感

器安装在每个轴承座上以检测振动信号。 DAQCard
 

TM-
6062E 采集卡每间隔 10 min 采集一次数据,采样率为

20
 

kHz 且采样点数为 20
 

480。 本文分析从 2004 年 2 月

12 日 10:32:39 ~ 2004 年 02 月 19 日 06:22:39 采集的轴
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承 1 的外圈全寿命信号,984 组信号(时间点数 K = 984)
的时间跨度为 164 h,最终外圈失效。 每个时间点取信号

的前 2
 

048 个点,采样信号如图 3 所示。 仅管信号幅值逐

渐增大,但凭借幅值难以跟踪检测轴承故障状态的演化

过程。

图 3　 轴承振动信号采样数据

Fig. 3　 Bearing
 

vibration
 

signal
 

sampling
 

data

　 　 在轴承的故障演化过程中,时域幅值及概率分布、频
域内不同频段的能量和谱峰位置、时频域能量等特性均

会发生不同程度的改变[23] ,因此通过广泛使用的 RMS、
Kurt 和 PE 等跟踪零件的故障状态及其演化过程,同时

与 SDE 特征和平滑 SDE 特征进行对比,分析状态预警线

构造的有效性。 首先,分别提取第 1 个 ~ 第 K 个(K =
984)时间点振动信号的 RMS、Kurt、PE、DE、SDE 及平滑

SDE 特征。 如图 4 所示,实线为随故障状态变化的归一

化后的特征曲线,虚线为特征曲线对应的状态预警线。
对于 RMS 和 Kurt,特征值随时间增大,因此判断预警点

时取式(20)中的阈值上限。 对于其余 PE、DE、SDE 和平

滑 SDE 熵值特征,特征值随时间减小,因此判断预警点

时取式(20)中的阈值下限。 PE、DE、SDE 和平滑 SDE 特

征随时间推移经历了“减小-增大-减小”的趋势并保持了

总体单调性,此外 SDE 的毛刺在平滑 SDE 中得到平滑。
根据平滑 SDE 的状态预警线,#525 时间点为故障预警

点,#1 ~ #525 时轴承正常运行,#526 ~ #768 时轴承运行状

态转入轻微磨损阶段, #769 ~ #979 为严重磨损阶段,
#980 ~ #984 为损毁状态。 对于 SDE 状态预警线,#529 时

间点为故障预警点,#764 为严重磨损点,与平滑 SDE 特

征的差异不大。

图 4　 轴承故障特征和相应的状态预警线

Fig. 4　 Bearing
 

fault
 

features
 

and
 

corresponding
 

state
 

warning
 

lines

　 　 图 4 中 RMS、PE、DE、SDE 和平滑 SDE 预警线检测

到的故障预警点分别为#573、#560、#545、#529 和#525,预
警时间点逐渐提前。 与 RMS、Kurt、PE 和传统 DE 相比,
SDE 及平滑 SDE 能更早地检测出故障预警点#529 和#

525,为维修及更换提供更长的准备时间,有效避免突发

故障造成的损坏。
SDE 状态预警线检测到#525 或#529 时间点后轴承

可能发生微弱故障,因此取#520 和#530 时间点的轴承信
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号进行故障检测,进一步确定故障是否发生。 如图 5 所

示,#520 和#530 时间点的振动信号的频谱中均很难检测

到故障缺陷频率,且两者频谱几乎相同。 究其原因,轴承

微弱的故障冲击淹没于背景噪声中,传统频谱难以检测

出异常。 因此,通过提出的自适应 VMD 抑制噪声并检测

零件故障。

图 5　 轴承#520 和#530 时间点信号的时域和频域图

Fig. 5　 Time
 

domain
 

and
 

frequency
 

domain
 

diagram
 

of
 

bearing
 

signals
 

No. 520
 

and
 

No. 530

　 　 根据 1. 2 节来设置模型参数并进行相关实验,结果

如图 6 所示,由#520 时间点振动信号第 4 次迭代时得到

的最佳参数对和适应度为[ 3,
 

101
 

6,
 

- 0. 181 82],由#
530 时间点振动信号第 7 次迭代时得到的最佳参数对和

适应度为[3,
 

263
 

3,
 

-0. 147 61]。 因此,#520 和#530 时

间点信号经过自适应 VMD 分解均得到 3 个 IMF,根据

表 1 所示的 IMF 的 Kurt 指标可知,#520 时间点信号的敏

感模态为 IMF2,#530 时间点信号的敏感模态为 IMF3。

图 6　 轴承#520 和#530 时间点信号的收敛曲线

Fig. 6　 The
 

convergence
 

curve
 

obtained
 

by
 

the
 

bearing
 

signals
 

No. 520
 

and
 

No. 530

表 1　 轴承自适应 VMD 各模态的峭度

Table
 

1　 The
 

kurtosis
 

values
 

of
 

the
 

bearing
 

modes
obtained

 

by
 

adaptive
 

VMD
信号 IMF1 IMF2 IMF3

轴承#520 2. 511
 

3 4. 272
 

7 3. 643
 

4
轴承#530 2. 106

 

3 2. 893
 

4 3. 163
 

3

　 　 #520 和#530 时间点的敏感模态的 Hilbert 包络谱如

图 7 所示,图 7( a)
 

#520 数据的敏感模态包络中包含轴

承的转频 29. 3
 

Hz 及其倍频,未检测到故障特征频率,表
明此时轴承未发生故障。 然而,应该时刻关注 SDE 的状

态预警线并检测故障预警点。 图 7(b)
 

#530 数据的敏感

模态包络中检测到了 234. 4
 

Hz 及其倍频,表明轴承的外

圈发生故障。 相应地,应该立刻进行维修更换,并制定更

频繁的检修更换计划。 同时,应该密切关注轴承油液的

铁屑含量及表面温度,与状态预警线相结合来跟踪轴承

故障状态。

3. 2　 单向阀故障检测及实验分析

　 　 实验表明 SDE 状态预警线能有效地跟踪轴承的运

行状态,基于自适应 VMD 的检测方法能准确确定预警点

处零件是否损坏,因此本节将该方法用于矿浆输送环境

下的单向阀故障检测。 实验数据来自大红山铁精矿浆输

送管道系统的三号泵站的 GEHO-TZPM2000 型隔膜泵,
主泵最大压力 24. 4 MPa,工作压力 18 ~ 21 MPa,输送高程

差 1
 

520 m,流量 350 m2 / h。
如图 8 所示,单台隔膜泵包含 3 个进料单向阀和 3

个排料单向阀。 其中,图 8(a1)为排料阀,图 8( a2)为进

料阀,8(b) 为单向阀的锥阀结构,线轴弹簧形成一个弱

阻尼振荡系统。 正常运行时,阀芯在阀室中往复运动,进
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图 7　 轴承#520 和#530 时间点信号敏感模态的包络谱

Fig. 7　 Envelope
 

spectrum
 

of
 

the
 

sensitive
 

mode
 

of
 

bearing
 

signals
 

No. 520
 

and
 

No. 530

料阀和排料阀的协同运作使矿浆飞速流动,图 8( c)为损

坏的单向阀阀芯。 本节中单向阀振动信号采集自铁精矿

浆输送过程,传感器测点及采集系统如图 9 所示。

图 8　 隔膜泵和单向阀结构图

Fig. 8　 Structural
 

diagram
 

of
 

diaphragm
 

pump
 

and
 

check
 

valve

　 　 6 只 PCB
 

352C33 加速度传感器固定于隔膜泵#1、#2
和#3 进料阀、排料阀壳体上,方向为 Z 轴方向。 通过

PXI-3342 采集卡的 0、2、4 通道采集#1、#2 和#3 进料阀的

Z 轴振动信号,1、3、5 通道采集排料阀的 Z 轴振动信号。
采样频率为 2

 

560
 

Hz,单点数据长度 76
 

800。
为提高故障状态跟踪效率,分阶段采集单向阀振动

信号,即单向阀正常运行时(前 500 h)每隔 1 h 采集一次

数据,单向阀局部磨损时(500 ~ 1
 

000 h)每隔 10 min 采集

一次数据,单向阀严重磨损时(1
 

000 h 后)每间隔 2 min
采集一次数据。 选取 421 个时间点样本,并取每个样本

的前 7
 

680 个点进行分析,采样数据如图 10 所示。 与实

验室轴承振动信号不同,由于受到工业环境下多种干扰

因素的影响,单向阀振动信号包含大量噪声和毛刺,幅值

变化极其复杂,因此故障状态跟踪及状态检测尤为困难。

图 9　 传感器测点、采集平台及故障单向阀

Fig. 9　 Sensor
 

measuring
 

point,
 

acquisition
 

platform
 

and
 

fault
 

check
 

valve



　 第 12 期 自适应 VMD 及其在状态跟踪及故障检测中的应用 · 63　　　 ·

图 10　 单向阀振动信号采样数据

Fig. 10　 Check
 

valve
 

vibration
 

signal
 

sampling
 

data

　 　 为了跟踪单向阀的故障演化过程,分别提取单向阀

第 1 个~第 K 个(K= 421)时间点振动信号的 RMS、Kurt、
PE、DE、SDE 及平滑 SDE 特征。 如图 11 所示,实线为特

征曲线,虚线为特征对应的状态预警线。 在轴承状态跟

踪中效果较好的 RMS 和 Kurt 在单向阀状态跟踪过程中

几乎失效,原因是工业环境下单向阀振动信号受到多因

素及背景噪声干扰。 PE 和 Kurt 随时间增大,因此判断

预警点时取式(20)中的阈值上限,其他熵值则取阈值下

限。 DE 和 SDE 特征随时间推移整体呈下降趋势,但波

形含大量的毛刺和噪声,难以识别单向阀故障状态的演

　 　 　 　

化过程。 平滑 SDE 则将 DE 的毛刺噪声进行了平滑,使
得单向阀的状态跟踪变得更便捷、清晰。 PE、DE 和 SDE
状态预警线“(虚线)”有多处转折,状态预警线检测到预

警点分别为#178、#175 和#170,且检测到#330 ~ #421 间

进入严重磨损阶段。 平滑 SDE 预警线检测到的预警点

为#168 时间点,相比 PE、DE 和 SDE 提前了 10、7 和 2 个

时间点。 此外平滑 SDE 能跟踪检测单向阀的状态,即
#1 ~ #168 时单向阀处于正常运行状态,#169 ~ #318 时处

于轻微磨损状态,#319 ~ #421 严重磨损阶段。

图 11　 单向阀故障特征和相应的状态预警线

Fig. 11　 Check
 

valve
 

fault
 

features
 

and
 

corresponding
 

state
 

warning
 

lines

　 　 为了确定预警点#168 附件单向阀是否发生磨损故

障,取#160 和#180 时间点振动信号并通过自适应 VMD
进行故障检测。 如图 12 所示,#160 和#180 时间点的时

域、频域波形存在差异,分别取两时间点信号的前 7680
个点并通过自适应 VMD 检测故障状态。

如图 13 所示,由#160 时间点振动信号第 3 次迭代得

到的最佳参数及适应度为[ 6,
 

1
 

000,
 

- 0. 138 23],由#

180 时间点信号第 2 次迭代得到的最佳参数及适应度为

[4,
 

104
 

9,
 

-0. 158 03]。 因此,#160 和#180 时间点信号

经过自适应 VMD 分别分解为 6 个 IMF 和 4 个 IMF。 根

据表 2 所示的各 IMF 的 Kurt 指标可知,#160 时间点信号

的敏感模态为 IMF6, # 180 时间点信号的敏感模态

为 IMF1。

表 2　 单向阀自适应 VMD 各模态的峭度

Table
 

2　 The
 

kurtosis
 

values
 

of
 

the
 

check
 

valve
 

modes
 

obtained
 

by
 

adaptive
 

VMD
信号 IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

单向阀#160 2. 727
 

4 4. 233
 

3 20. 689
 

7 31. 412
 

6 54. 572
 

8 244. 355
 

7
单向阀#180 5. 649

 

5 5. 141
 

7 4. 407
 

6 4. 420
 

5 — —
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图 12　 单向阀#520 和#530 时间点信号的时域和频域图

Fig. 12　 Time
 

domain
 

and
 

frequency
 

domain
 

diagram
 

of
 

check
 

valve
 

signals
 

No. 520
 

and
 

No. 530

图 13　 单向阀#160 和#180 时间点信号的收敛曲线

Fig. 13　 The
 

convergence
 

curve
 

obtained
 

by
 

the
 

check
 

valve
 

signals
 

No. 160
 

and
 

No. 180

　 　 #160 和#180 时间点的敏感模态的 Hilbert 包络谱如

图 14 所示,#160 信号的敏感模态的包络谱中 4. 688
 

Hz
为主频率且其倍频 13. 75

 

Hz 很明显,此时单向阀处于正

常运行状态。 #180 信号的敏感模态的包络谱主频变为

0. 937 5
 

Hz 且出现其倍频,频率成分变得更加紊乱,检测

出单向阀发生微弱故障。 根据该检测结果,自#168 时间

　 　 　 　

点后应该密切关注单向阀内的矿浆压力、流速、电机转速

等变化情况,此外还需密切关注 SDE 和平滑 SDE 的渐变

情况制定更加频繁的检修计划。 如果检测点为#180 时

间点,应该立即对单向阀进行维修并制定检修和更换计

划,以保证单向阀的安全运行和矿浆的平稳输送。

图 14　 单向阀#160 和#180 时间点信号敏感模态的包络谱

Fig. 14　 Envelope
 

spectrum
 

of
 

the
 

sensitive
 

mode
 

of
 

check
 

valve
 

signals
 

No. 160
 

and
 

No. 180

4　 结　 论
 

　 　 本文对比分析 RMS、Kurt、PE、DE 和 SDE 对轴承和

单向阀的故障状态跟踪性能,提出一种有效的状态预警

线确定方法和自适应 VMD 模型来跟踪检测机械零件的

运行状态。 通过对实验室环境下轴承振动信号和工业环

境下单向阀振动信号的分析,表明提出的状态预警线能

有效跟踪机械的运行状态并能提前确定故障预警点,自
适应 VMD 能准确检测出故障预警点附近机械的故障状

态。 进一步表明根据振动信号能量分布和相关性构造的

适应度函数和 GOA 优化模型是有效的,自适应 VMD 在
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抑制背景噪声的同时能根据模态的频率异常准确检测出

零件故障,为机械零件故障检测提供了新方法。
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