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Abstract: Aiming at the problem that the feature extraction performance of variational modal decomposition (VMD) is affected by its
parameters and the poor real-time performance of fault state tracking, an early warning approach and adaptive VMD method are proposed
and applied to mechanical part fault detection. Firstly, the degradation characteristics of the full-life vibration signal of mechanical parts
are extracted, and then the state warning line is constructed based on the 20 criterion. Through the early warning line, the degradation
state of mechanical parts can be tracked and the fault early warning points can be detected. Then, the energy entropy and mutual
information are introduced to construct the fitness function, and an adaptive VMD model is constructed by grasshopper optimization
algorithm (GOA) to detect the fault state of mechanical parts near the early warning point. The results show that the proposed state early
warning line can detect the fault early warning points timelier and more effectively, and the adaptive VMD can detect the faults of
mechanical parts more accurately, which have good application value.
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Fig. 1 Flow chart of fault detection
model based on adaptive VMD
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