34k Hs5H HL T 5 AR 2 4R Vol.34 No.5
2020 4F 5 A JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENTATION -89 -

DOLI: 10. 13382/j. jemi. B2002948

BEHEEITENSEAFTFFLiRERETES"

TORY EHE&EY O mAFY B oz g2
(1R BREEETHYR Kb 410082; 2. ML AR SRR E SR
TREEE=E K 410082; 3. BIp TAb K2 BHASFEETAESBE BN 421000)

T B EXME G R LA ST 5 2 v RS B TS IR, AR R R AR AR R R T T A T AR AT 5 e M 1 2 e it 1
FTEENLA ABRBLES ik o 207 Ik B e R R G B BRI S 40, B 5 4T BS BT % A6 R FLA A A S P AT 1 BE BT BLaE
SRIG VT T R4 S5 Lo A i 4 i 7 v X BE ST AT IR B o X T T A i 1) B I ) R, SR P 8 50k 3 A% LR AT
59, 3T Lyapunov BUSX RGN PhEAT TR, O BLAGT AT B8 S0 50 45 5 W, 3205 1% RS 764 R A Bl [1] Py 5 ) i stk
& HBE T ERT SIS, 5 T HEH RE NGRS,

K4 A, BN A F AU BB

FESES: TP241.2 CRKPRIRAD . A E RER AR 5r 24CHD: 510. 8050

Non-singular terminal sliding mode impedance
control of free-form surface grinding robot
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(1. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China; 2. National
Engineering Laboratory for Robot Visual Perception and Control, Hunan University, Changsha 410082, China;
3. College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 421000, China)

Abstract : In order to solve the problem that traditional control method is difficult to achieve high-precision grinding of complex surfaces,
this paper designs the impedance control method of complex surface grinding robot based on nonsingular terminal sliding mode in
Cartesian coordinate system. Firstly, according to the impedance model parameters of the system, the set grinding trajectory is
transformed into the executable impedance trajectory at the end of the robot. Then a control method based on nonsingular terminal sliding
mode is designed to track the impedance trajectory. For the chattering problem of sliding mode control, the exponential approach law is
used to weaken it. The stability of the system is proved based on Lyapunov theory. Simulation and cylinder grinding experiment results
show that the method can achieve convergence in a limited time and avoid the control singularity, and improve the robustness and
accuracy of the control system.
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Fig. 1 Sketch of free-form surface grinding robot model
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