基于虚拟障碍物决策的自适应两阶段轨迹规划方法
DOI:
CSTR:
作者:
作者单位:

东南大学仪器科学与工程学院综合时空网络与装备技术全国重点实验室南京210096

作者简介:

通讯作者:

中图分类号:

TP242;TN96

基金项目:

江苏省前沿技术研发计划项目(BF2024009)资助


Adaptive two-stage trajectory planning method based on virtual obstacle decision-making
Author:
Affiliation:

State Key Laboratory of comprehensive PNT Network and Equipment Technology, School of Instrument Science and Engineering, Southeast University,Nanjing 210096, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统轨迹规划算法在狭长空间规划成功率低、自适应程度差等问题,提出一种基于虚拟障碍物决策的自适应两阶段轨迹规划方法。首先,通过动态规划和二次规划完成无人车辆的路径规划和速度规划;其次,提出了一种自适应聚集采样策略解决了狭长空间较难通过的问题;最后,构建了一种基于随机森林的虚拟障碍物决策模型提升了无人车辆在不同会车情况决策的合理性。在Carla(car learning to act)仿真平台的结果表明,相比于传统方法,该方法在狭窄区域的静态多障碍物避障时路径长度、路径曲率分别降低了2.4%、85.6%,规划成功率、安全性及其稳定性分别提高了约20%、20.6%和44.9%;在狭窄区域的动态多障碍物避障时路径长度、路径曲率分别降低了8.3%、76.4%,规划成功率、安全性及其稳定性分别提高了约36%、78.2%和45.3%。最后,将方法部署到实际无人车辆中,在狭长的走廊场景设置障碍物进行测试,验证了方法的有效性。

    Abstract:

    To address the limitations of traditional trajectory planning algorithms in confined spaces, such as low planning success rates, poor adaptability, and deviations from human driving habits, this paper proposes an adaptive two-stage trajectory planning algorithm integrated with virtual obstacle decision-making. The first stage combines dynamic programming and quadratic programming to achieve path planning and velocity optimization for autonomous vehicles. Subsequently, an adaptive aggregation sampling strategy is introduced to resolve navigation challenges in narrow environments. Finally, a random forest-based virtual obstacle decision model is developed to enhance decision-making rationality under diverse vehicle interaction scenarios. The results on the simulation platform Carla show that, compared with the traditional method, the path length and path curvature of the proposed method are reduced by 2.4% and 85.6% respectively, and the success rate of planning, safety and stability are improved by about 20%, 20.6% and 44.9% respectively in the static multi-obstacle avoidance in narrow areas. In the dynamic multi-obstacle avoidance in narrow areas, the path length and path curvature are reduced by 8.3% and 76.4%, respectively, and the planning success rate, safety and stability are improved by about 36%, 78.2% and 45.3%, respectively. Finally, the method was deployed to the actual unmanned vehicle, and the obstacles were set up in the narrow and long corridor scene for testing, which verified the effectiveness of the method.

    参考文献
    相似文献
    引证文献
引用本文

张俊豪,陶贤露,潘树国,高旺,薛佳慧.基于虚拟障碍物决策的自适应两阶段轨迹规划方法[J].电子测量与仪器学报,2025,39(9):75-86

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-09
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告