基于改进黏菌算法的无人船全局路径规划
DOI:
CSTR:
作者:
作者单位:

集美大学航海学院厦门361021

作者简介:

通讯作者:

中图分类号:

TP391;TN98

基金项目:


Enhanced Slime Mould Algorithm-based global path planning for unmanned surface vehicles
Author:
Affiliation:

Navigation College, Jimei University, Xiamen 361021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高质量的全局路径规划是无人船艇(unmanned surface vehicle, USV)自主航行的关键技术之一。针对USV复杂障碍环境下全局路径规划问题,提出一种基于多策略优化黏菌算法(multi-strategy enhanced slime mould algorithm, ME-SMA)的全局路径规划方法。ME-SMA针对黏菌算法(slime mould algorithm, SMA)存在初始种群分布不均、收敛速度慢及易陷入局部最优等问题,通过改进的Logistic混沌映射优化种群初始化,增强全局搜索能力;结合遗传算法(genetic algorithm, GA)的交叉、变异及选择策略,提升局部开发效率;引入黄金正弦策略动态调整搜索方向,避免早熟收敛。为验证ME-SMA的有效性,在9类基准测试函数上进行了测试。实验结果表明,相较于原始SMA及其他对比算法,ME-SMA展现出较好的收敛精度与稳定性。在相同复杂障碍环境下进行的仿真实验表明,ME-SMA在收敛速度、任务完成时间及航行距离等方面均有显著提升,与其余实验算法进行对比,路径长度均值平均减少1.8%,稳定性平均提升28.22%,凸显了其在USV全局路径规划应用中的高效性与工程实用价值。

    Abstract:

    High-quality global path planning is one of the key technologies enabling autonomous navigation of unmanned surface vehicles (USVs). To address the global path planning problem for USVs in complex obstacle environments, this paper proposes a global path planning method based on the multi-strategy enhanced slime mould algorithm (ME-SMA). To overcome SMA’s limitations such as uneven initial population distribution, slow convergence speed, and proneness to local optima, ME-SMA employs several enhancements: it optimizes population initialization using improved Logistic chaotic mapping to enhance global exploration; incorporates crossover, mutation, and selection strategies from genetic algorithms to improve local exploitation efficiency; and introduces the golden sine strategy to dynamically adjust the search direction, thereby avoiding premature convergence. To validate the effectiveness of ME-SMA, we tested it on nine types of benchmark functions. The results show that ME-SMA achieves superior convergence accuracy and stability compared to the original SMA and other comparative algorithms. Simulation experiments in identical complex obstacle environments further demonstrate that ME-SMA significantly improves convergence speed, task completion time, and navigation distance. Compared to the other experimental algorithms, ME-SMA achieves an average reduction of 1.8% in path length and an average improvement of 28.22% in stability, highlighting its high efficiency and practical engineering value for USV global path planning applications.

    参考文献
    相似文献
    引证文献
引用本文

刘金科,梁作鹏,蒲泽森,杨祎,周世波.基于改进黏菌算法的无人船全局路径规划[J].电子测量与仪器学报,2025,39(9):111-125

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-09
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告