基于动态自适应优化模型的新型图像质量增强方法研究
DOI:
CSTR:
作者:
作者单位:

1.巢湖学院计算机与人工智能学院巢湖238024;2.安徽工程大学电气工程学院芜湖241000; 3.上海大学上海市电站自动化技术重点实验室上海200072

作者简介:

通讯作者:

中图分类号:

TP31;TN919.8

基金项目:

安徽省自然科学基金(2308085QF205)、安徽省高校自然科学研究项目(2024AH051323)、电气传动与控制安徽省重点实验室开放基金(DQKJ202402)、巢湖学院科研启动基金(KYQD-202206)项目资助


Research on novel image quality enhancement method based on dynamic adaptive optimization model
Author:
Affiliation:

1.School of Computer Science and Artificial Intelligence, Chaohu University, Chaohu 238024, China; 2.School of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China; 3.Shanghai Key Laboratory of Power Station Automation Technology, Shanghai University, Shanghai 200072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统图像质量增强算法处理不同场景效果较差的问题,提出了一种基于动态自适应优化模型的新型图像质量增强方法,以适应不同场景的需求,提升图像质量增强的效果。首先,根据待增强图像的大气散射特性,构建出一种动态自适应优化模型,并采用图像评价指标峰值信噪比(PSNR)与结构相似性(SSIM)设计出上述模型的目标函数,为不同场景下的图像质量增强提供评估标准;在此基础上,设计了一种合作竞争学习算子,由此提出合作竞争人类学习优化算法,以计算出模型的最优透射率阈值t0、滤波窗口n、参数ω,从而构建出最优的动态自适应优化模型,实现不同场景图像质量增强。最后,利用SOTS标测试集中图像和6幅实际场景图像进行图像质量增强实验,并将其与对比度限制的自适应直方图均衡多尺度融合算法(CLAHEMF)、基于亮度融合透射率的改进暗通道先验算法(IDCPLT)和暗通道先验模型-粒子群优化算法(DCP-PSO)3种方法进行对比分析。实验结果表明,所提出方法无论是主观视觉效果还是客观评价指标,均优于其他3种对比方法,从而充分验证所提出方法的有效性与可行性。

    Abstract:

    To address the issue of poor performance of traditional image quality enhancement algorithms across different scenes, a novel image quality enhancement method based on dynamic adaptive optimization model is proposed to meet the diverse requirements of various scenes and improve the effectiveness of image quality enhancement. Firstly, a dynamic adaptive optimization model is constructed based on the atmospheric scattering characteristics of the enhanced image. And the objective function of the model is designed using image quality assessment metrics, PSNR and SSIM, to provide evaluation standards for image quality enhancement in different scenes. Based on this, a cooperative-competitive learning operator is designed and cooperative-competitive human learning optimization algorithm is proposed to calculate the optimal transmission threshold t0, filtering window size n, and weighting parameter ω. Then the optimal dynamic adaptive optimization model is constructed to achieve image quality enhancement in different scenes. Finally, image quality enhancement experiments are conducted using images from the SOTS benchmark test set and six real scene images. The proposed method is compared with three other methods, i.e. CLAHEMF, IDCPLT and DCP-PSO. Experimental results demonstrate that the proposed method outperforms the three comparison methods in terms of both subjective visual effects and objective evaluation metrics, thereby fully validating the effectiveness and feasibility of the proposed approach.

    参考文献
    相似文献
    引证文献
引用本文

张平改,陈洪亮,魏利胜,胡保玲.基于动态自适应优化模型的新型图像质量增强方法研究[J].电子测量与仪器学报,2025,39(6):88-99

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-16
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告