基于DGANomaly的轮胎缺陷检测研究
DOI:
CSTR:
作者:
作者单位:

沈阳理工大学自动化与电气工程学院沈阳110159

作者简介:

通讯作者:

中图分类号:

TN1

基金项目:

辽宁省自然科学基金(2022-KF-14-02)、辽宁省教育厅面上项目(LJKMZ20220617)资助


Research on tire defect detection based on D2GANomaly Liu YuntingFeng XinyueLi SiweiZhang Zhixing
Author:
Affiliation:

School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对GANomaly模型潜在向量对正样本特征表征能力不足、解码器重构图像质量欠佳以及判别器判别能力不足的问题,提出一种基于D2GANomaly的轮胎X光图像缺陷检测方法。首先,在编码器中引入多尺度动态残差模块(MDRB),通过可变核卷积(AKConv)与残差连接的组合,动态融合多尺度特征,提高细粒度特征提取能力;其次,在解码器部分引入通道残差子像素解码器(CRSD),利用双解码器并行学习,优化复杂纹理和细节的重建质量;最后,判别网络采用二元并行判别网络(DDMN),通过可切换空洞卷积(SAC)选取最优空洞扩张系数,增强模型对轮胎X光图像中不同大小的缺陷检测能力,进而提高判别能力。实验结果表明,在受试者工作特征曲线下面积(AUC)与平均精度(AP)两项核心性能指标上,所提方法均实现了显著提升,相较于原始模型GANomaly AUC值提升了13.7%,AP值提升了16.4%。由此可见,改进后的模型有效提升了轮胎缺陷的检测精度。

    Abstract:

    Aiming at the issues of insufficient feature representation capability of latent vectors for positive samples, suboptimal reconstructed image quality by the decoder, and inadequate discriminative ability of the discriminator in the GANomaly model, a tire X-ray image defect detection method based on D2GANomaly is proposed. First, a multi-scale dynamic residual block (MDRB) is introduced into the encoder, which combines adjustable kernel convolution (AKConv) with residual connections to dynamically fuse multi-scale features and enhance fine-grained feature extraction capabilities. Second, a channel residual sub-pixel decoder (CRSD) is incorporated into the decoder section, utilizing dual decoders for parallel learning to optimize the reconstruction quality of complex textures and details. Finally, the discriminator employs a dual discriminative module network (DDMN), which uses switchable atrous convolution (SAC) to select the optimal dilation rate, thereby enhancing the model’s ability to detect defects of varying sizes in tire X-ray images and improving its discriminative performance. Experimental results demonstrate significant improvements in two core performance metrics, Area under the receiver operating characteristic curve (AUC) and average precision (AP). Compared to the original GANomaly model, the proposed method achieves a 13.7% increase in AUC and a 16.4% increase in AP. This indicates that the improved model effectively enhances the accuracy of tire defect detection.

    参考文献
    相似文献
    引证文献
引用本文

刘韵婷,冯欣悦,李思维,张智星.基于DGANomaly的轮胎缺陷检测研究[J].电子测量与仪器学报,2025,39(8):91-100

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-20
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告