基于GWO-BiLSTM的电磁继电器寿命预测
DOI:
CSTR:
作者:
作者单位:

1.空军工程大学航空工程学院西安710038;2.中国人民解放军93756部队天津300131; 3.中国人民解放军93184部队北京100070

作者简介:

通讯作者:

中图分类号:

TN0;TP206+.3

基金项目:

空军工程大学航空动力系统与等离子体技术全国重点实验室开放基金课题(APSPT202304001)资助


Life prediction of electromagnetic relays based on GWO-BiLSTM
Author:
Affiliation:

1.Aviation Engineering School, Air Force Engineering University, Xi′an 710038, China; 2.Unit 93756 of PLA, Tianjin 300131, China; 3.Unit 93184 of PLA, Beijing 100070, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前继电器寿命预测没有充分利用其退化过程前后状态之间联系、人工调参效率低下的问题,提出了一种基于灰狼优化算法(GWO)和双向长短期记忆(BiLSTM)网络的电磁继电器寿命预测方法。首先,构建电磁继电器加速退化实验平台,采集继电器全寿命周期数据,得到电磁继电器的平均失效寿命;然后,对数据进行采样、划分和归一化处理,并通过皮尔逊相关系数分析法筛选出线圈电阻、负载电流、接触电阻、释放时间4个关键特征参数作为预测模型的输入;最后,将电磁继电器寿命的预测值和真实值的均方根误差(RMSE)作为GWO算法的适应度函数,优化BiLSTM模型的隐含层神经元个数、dropout率和初始学习率,利用得到的最优参数组合重构预测模型。实例验证表明,相比传统的反向传播神经网络(BPNN)模型、门控循环单元(GRU)模型和长短期记忆网络(LSTM)模型,GWO-BiLSTM模型的RMSE和MAPE分别平均下降了56.7%和58.2%,表明该模型能够有效提高电磁继电器的寿命预测精度。

    Abstract:

    To address the current issues in relay life prediction where the correlation between degradation states is underutilized and manual parameter tuning is inefficient, this study proposes an electromagnetic relay life prediction method based on the grey wolf optimizer (GWO) and bidirectional long short-term memory (BiLSTM) network. First, an accelerated degradation experiment platform for electromagnetic relays is constructed to collect full service-life data, from which the mean time to failure is derived. The data is then sampled, partitioned, and normalized, with four key feature parameters—coil resistance, load current, contact resistance, and release time—selected as model inputs using Pearson correlation analysis. Subsequently, the root mean squared error (RMSE) between predicted and actual relay life is employed as the fitness function for the GWO algorithm, optimizing the number of hidden layer neurons, dropout rate, and initial learning rate of the BiLSTM model. The prediction model is reconstructed using the optimal parameter combination. Experimental validation demonstrates that the proposed GWO-BiLSTM model achieves average reductions of 56.7% in RMSE and 58.2% in MAPE compared to conventional back-propagation neural network (BPNN), gated recurrent unit (GRU), and long short-term memory (LSTM) models, effectively enhancing the prediction accuracy of electromagnetic relay service life.

    参考文献
    相似文献
    引证文献
引用本文

杨蕊璟,黄以锋,周伟,苗学问,焦晓璇.基于GWO-BiLSTM的电磁继电器寿命预测[J].电子测量与仪器学报,2025,39(7):159-170

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-21
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告