基于DLGS-RRT-Connect算法的狭窄复杂空间路径规划
DOI:
CSTR:
作者:
作者单位:

东南大学仪器科学与工程学院综合时空网络与装备技术全国重点实验室南京210096

作者简介:

通讯作者:

中图分类号:

TP242;TN96

基金项目:

江苏省前沿技术研发计划(BF2024009)项目资助


Narrow and complex spatial path planning based on DLGS-RRT-Connect algorithm
Author:
Affiliation:

School of Instrument Science and Engineering, State Key Laboratory of comprehensive PNT Network and Equipment Technology,Southeast University, Nanjing 210096, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    路径规划是无人车辆实现自主导航的关键技术,决定着无人车辆能否安全高效地抵达目标点。但是,常见的路径规划算法在狭窄通道环境中存在收敛速度慢、规划耗时长以及路径质量差的问题。为此,提出一种基于双层引导采样的RRT-Connect(DLGS-RRT-Connect)算法。首先,在狭窄通道中预先构建引导路径,采用搜索式连接策略引导随机树在狭窄通道中沿引导路径拓展,从而减少无效采样,提升算法在狭窄通道内的探索效率。其次,算法引入目标偏置策略,降低采样过程中的随机性,为随机树的生长提供方向性引导,从而进一步提升路径规划的效率。最后,仿真结果表明,相较于常见的Goal_bias RRT、Informed-RRT*和RRT-Connect算法,DLGS-RRT-Connect算法在狭窄通道环境中的规划成功率分别提高了35%,60%,26%,平均规划时长分别降低了70.62%,97.65%,63.92%,路径平均长度也分别减少了14.53%,16.70%,18.84%,可以有效改善狭窄环境规划路径的平滑性和安全性。

    Abstract:

    Path planning is a key technology for unmanned vehicles to realize autonomous navigation. Whether a safe and smooth travelable path can be quickly planned in a narrow channel determines the efficiency of unmanned vehicles in performing tasks in narrow and complex environments. However, common path planning algorithms usually have the problems of slow convergence speed, long planning time and poor path quality in the narrow channel environment. For this reason, this paper proposes a RRT-Connect algorithm Based on dual-layer guided sampling (DLGS-RRT-Connect) algorithm. First, the guided path is pre-constructed in the narrow channel, and the searching connection strategy is used to guide the random tree to expand along the guided path in the narrow channel, so as to reduce the invalid sampling and improve the exploration efficiency of the algorithm in the narrow channel. Secondly, the algorithm introduces a target bias strategy to reduce the randomness in the sampling process and provide directional guidance for the growth of the random tree, thus further improving the efficiency of path planning. Finally, the simulation results show that compared with the common Goal_bias RRT, Informed-RRT*, and RRT-Connect algorithms, the DLGS-RRT-Connect algorithm proposed in this paper improves the planning success rate in narrow channel environments by 35%, 60%, and 26%, respectively, and reduces the average planning time by 70.62%, 70.62%, 70.65%, and 97.65%, and 63.92%, and the average path length is also reduced by 14.53%, 16.70%, and 18.84%, respectively, which can effectively improve the smoothness and safety of planning paths in narrow environments.

    参考文献
    相似文献
    引证文献
引用本文

薛佳慧,陶贤露,潘树国,王萍,高旺,张俊豪.基于DLGS-RRT-Connect算法的狭窄复杂空间路径规划[J].电子测量与仪器学报,2025,39(9):25-38

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-09
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告