芯片多参数一致性的筛选方法
DOI:
CSTR:
作者:
作者单位:

安庆师范大学电子工程与智能制造学院安庆246133

作者简介:

通讯作者:

中图分类号:

TN407

基金项目:

安徽省高校自然科学研究项目(2023AH050500)、国家自然科学基金(62474002)、宜城精英项目(202371)、集成与微组装技术国家地方联合工程实验室开放课题(KFJJ20230101)项目资助


Screening method for multi parameter consistency of chips
Author:
Affiliation:

School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing 246133,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于制造工艺的偏差,芯片有些参数值离散性较大,为了提高电子系统的稳定性和可靠性,设计一种提高芯片一致性的多参数低相关聚类优选(multiparameter lowcorrelation clustering selection,MLCS)算法。该算法首先计算参数间的斯皮尔曼秩相关系数,选择相关性小的测试参数进行筛选,提高选择的效率,然后对多个参数分别用1维K-means方法进行3级聚类,再综合它们的分类结果,筛选出集中于聚类中心的芯片。实验结果表明,该算法能够实现测试芯片的自动筛选,位于中间聚类中心的芯片参数值都在均值附近,上下不偏离1个方差,且分类界限清晰、聚类效果不受筛选参数个数的限制;894个样本按照2个参数筛选,散点图显示的效果明显优于常规的二维模糊聚类和二维K-means算法;所用时间约0.04 s,而模糊聚类算法耗时超过12 s。该算法具有良好的适应性,能够有效选出多种参数值都接近均值的芯片。

    Abstract:

    Due to manufacturing process deviations, some parameter values of chips have large discreteness. In order to improve the stability and reliability of electronic systems, this paper designs a multi parameter low correlation clustering selection (MLCS) algorithm to enhance chip consistency. The algorithm first calculates the Spearman rank correlation coefficient between parameters, selects test parameters with low correlation for screening, improves the efficiency of selection, and then uses 1D K-means method to perform 3-level clustering on multiple parameters. Based on their classification results, chips concentrated in the cluster center are selected. The experimental results show that the algorithm can achieve automatic screening of test chips. The parameter values of chips located in the middle cluster center are all around the mean, with no deviation of one variance, and the classification boundary is clear. The clustering effect is not limited by the number of screening parameters; 894 samples were screened according to 2 parameters, and the scatter plot showed significantly better results than conventional 2D fuzzy clustering and 2D K-means algorithm; The time taken is about 0.04 seconds, while the fuzzy clustering algorithm takes over 12 seconds. This algorithm has good adaptability and can effectively select chips with multiple parameter values that are close to the mean.

    参考文献
    相似文献
    引证文献
引用本文

郑江云,詹文法,蔡雪原.芯片多参数一致性的筛选方法[J].电子测量与仪器学报,2025,39(7):81-87

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-21
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告