基于多尺度特征融合的轻量化道路损伤检测算法
DOI:
CSTR:
作者:
作者单位:

辽宁科技大学计算机与软件工程学院鞍山114000

作者简介:

通讯作者:

中图分类号:

TP391;TN911.73

基金项目:

国家自然科学基金(62072086)、辽宁省教育厅高校基本科研项目(LJ242510146006)资助


Lightweight road damage detection algorithm based on multi-scale feature fusion
Author:
Affiliation:

School of Computer and Software Engineering, University of Science and Technology Liaoning, Anshan 114000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高现阶段道路损伤检测方法在复杂环境下检测困难、细节纹理丢失严重、效率低等问题,提出了多尺度特征融合的轻量化YOLO算法(MSL-YOLO)。首先,在YOLO11n的基础上进行改进,针对损伤目标特征表达能力弱,设计特征融合通道注意力(feature fusion channel attention,FFCA)模块提高损伤信息的权重,加强特征信息的提取,减少冗余信息;为了在复杂环境下更好地捕捉不同尺寸的损伤目标,设计了一种多尺度特征增强(multi-scale feature enhancement,MSFE)模块提升模型的多尺度特征融合能力,进一步提高检测性能;为实现模型轻量化和检测实时化,在Neck部分引入了轻量级网络(lightweight network,LNet)来减轻模型的计算复杂度,方便模型的部署和应用。实验结果表明,在RDD2022道路裂缝数据集上,所提方法检测平均精度为52.5%,模型参数量为2.3×106,相较于YOLO11n算法平均精度提升了1.8%,参数量下降了11.5%。不仅能满足对道路损伤检测的高精度、高速度、轻量化的要求,且具有较强的鲁棒性和实时性。

    Abstract:

    In order to improve the current road damage detection methods in complex environment detection difficulties, serious detail texture loss, low efficiency, a multi-scale feature fusion lightweight YOLO (MSL-YOLO) method is proposed. Firstly, based on the improvement of YOLO11n, the Feature fusion channel attention (FFCA) module is designed to improve the weight of damage information, strengthen the extraction of feature information, and reduce redundant information. In order to better capture damage targets of different sizes in complex environments, a multi-scale feature enhancement (MSFE) module is designed to enhance the multi-scale feature fusion capability of the model and further improve the detection performance. In order to realize the Lightweight model and real-time detection, lightweight network (LNet) is introduced in Neck to reduce the computational complexity of the model and facilitate the deployment and application of the model. The experimental results show that on the RDD2022 road crack dataset, the proposed method has an average detection accuracy of 52.5%, and the number of model parameters is 2.3×106, which is 1.8% higher than that of YOLO11n algorithm, and the number of parameters is 11.5% lower. It can not only meet the requirements of high precision, high speed and lightweight for road damage detection, but also has strong robustness and real-time.

    参考文献
    相似文献
    引证文献
引用本文

武兵,田莹.基于多尺度特征融合的轻量化道路损伤检测算法[J].电子测量与仪器学报,2025,39(11):175-184

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-03
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告