基于误差反馈和雾霾感知的图像去雾
DOI:
CSTR:
作者:
作者单位:

湖南科技大学计算机科学与工程学院湘潭411100

作者简介:

通讯作者:

中图分类号:

TP39;TN911.73

基金项目:

湖南省自然科学基金(2025JJ50363)、湖南省教育厅科研项目(24A0356)、湖南省科技创新计划(2024RC3216)项目资助


Image dehazing based on error feedback and haze aware
Author:
Affiliation:

School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    雾霾环境下拍摄的图像通常受到对比度降低、细节退化或色彩失真等多种因素的干扰,严重影响视觉体验和后续高级视觉任务的准确性。为了有效去除图像中的雾霾,提出了一种基于误差反馈的多尺度密集残差去雾网络(multi-scale dense residual dehazing network, MDRD-Net)。该网络在编、解码路径中对称引入误差反馈模块(error feedback module, EFM),以补偿下采样导致的信息丢失,并在误差反馈模块之间引入密集连接,加强非邻层级间的信息交互。为了让网络重点关注图像中的浓雾和细节区域,网络在特征提取阶段级联了多个雾霾感知模块(haze aware module, HAM)。此外,网络在跳跃连接中引入注意力机制,实现对编、解码端特征的自适应融合,克服深、浅层特征之间存在的语义鸿沟。在RESIDE公开数据集上进行了广泛实验,结果表明,提出方法可有效去除图像中的雾霾干扰,获得色彩真实、对比度高、细节丰富的高质量无雾图像,在定量和定性分析中均显著优于多种现有先进方法。

    Abstract:

    Images captured in haze are often affected by contrast reduction, detail degradation, or color distortion, which significantly impair visual quality and affect the performance of high-level vision tasks. To effectively remove the haze from images, a multi-scale dense residual dehazing network (MDRD-Net) based on error feedback is proposed. In this network, error feedback modules (EFM) are symmetrically introduced in the encoding and decoding paths to compensate for the information loss caused by downsampling. Dense connections are introduced between error feedback modules to enhance information interaction between non-adjacent layers. To make the network focus on regions with thick haze and rich details, multiple haze aware modules (HAM) are cascaded in the feature extraction stage. Additionally, an attention mechanism is introduced in the skip connections to adaptively fuse the features from the encoder and decoder to overcome the semantic gap between deep and shallow features. Extensive experiments on the RESIDE public dataset demonstrate that the proposed method can effectively remove the haze interference and obtain clear images with true colors, high contrast, and rich details. The results, both quantitatively and qualitatively, show a significant improvement over those of many existing state-of-the-art methods.

    参考文献
    相似文献
    引证文献
引用本文

高雯婷,廖苗,荣佳丽,郭娟秀.基于误差反馈和雾霾感知的图像去雾[J].电子测量与仪器学报,2025,39(11):214-223

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-03
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告