改进GAN数据增强的小样本管道漏磁缺陷识别
DOI:
CSTR:
作者:
作者单位:

1.燕山大学电气工程学院秦皇岛066004;2.燕山大学河北省测试计量技术及仪器重点实验室秦皇岛066004; 3.燕山大学信息科学与工程学院秦皇岛066004

作者简介:

通讯作者:

中图分类号:

TN06;TE88

基金项目:

河北省自然科学基金(E2024203150)项目资助


Small samples defect recognition for pipeline magnetic flux leakage based on improved GAN data augmentation
Author:
Affiliation:

1.School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; 2.Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Yanshan University, Qinhuangdao 066004, China; 3.School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂管道漏磁缺陷识别研究中,因实际漏磁缺陷样本数量少、差异大导致的智能识别模型在实际应用中性能不佳的问题,提出了一种基于改进生成对抗网络的数据增强方法。首先,该方法研究了多类别混合估计的方法为生成器提供原始信号的先验信息,改进生成器的随机噪声输入,同时在生成器网络中引入多头注意力机制以捕获全局关键特征,提高生成样本质量;然后,研究了基于变分自编码重构误差的样本筛选方法,从生成样本中选取质量更高的样本,用来改善识别模型的训练效率;最后,将筛选出的生成样本及原始样本组合构成缺陷样本数据集,实现了数据增强。为验证数据增强效果,实验中采用常用的分类方法对扩充后的漏磁缺陷信号进行分类识别,实验结果表明,改进的方法在样本量较小的情况下平均识别准确率可达93%,相比其他类似方法具有更好的性能。

    Abstract:

    In the study of pipeline magnetic leakage detection, intelligent recognition models often struggle due to the limited number and significant variability of defect samples. To address this, a data augmentation method based on an improved Generative Adversarial Network is proposed. A multi-class mixed estimation approach provides prior information to the generator, enhancing its random noise input. A multi-head attention mechanism is integrated into the generator to capture global features, improving the quality of generated samples. Additionally, a sample selection method based on variational autoencoder reconstruction error filters higher-quality generated samples, improving the training efficiency of the recognition model. Finally, selected generated and original samples are combined to form an augmented defect sample dataset. Classification methods are applied to classify the augmented leakage magnetic defect signals. Results show that under small sample conditions, the proposed method achieves an average recognition accuracy of 93%, outperforming similar methods.

    参考文献
    相似文献
    引证文献
引用本文

温江涛,闫鹏,周家鑫,孙洁娣.改进GAN数据增强的小样本管道漏磁缺陷识别[J].电子测量与仪器学报,2025,39(6):142-153

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-16
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告