改进YOLOv5s的烟火检测方法
DOI:
CSTR:
作者:
作者单位:

天津大学精密测试技术及仪器全国重点实验室天津300072

作者简介:

通讯作者:

中图分类号:

TN911.73; TP751

基金项目:

天津市轨道交通导航定位及时空大数据技术重点实验室开放课题基金(TKL2023B10)、天津市自然科学基金重点项目(21JCZDJC00670)、国家自然科学基金(41601446)项目资助


The refined YOLOv5s fire and smoke detection method
Author:
Affiliation:

State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    实时、高精度烟火检测对于火情监测与快速预警具有重要意义。针对现有检测方法难以同时兼顾准确率和实时性以及计算复杂度较高等问题,提出了一种改进YOLOv5s的烟火检测方法。首先,优化了Neck结构。在原有的特征金字塔网络-路径聚合网络(FPN-PAN)结构基础上,额外增加了一个更小尺度的P6特征检测层,从而提高网络的多尺度特征融合能力、小目标的识别与定位精度。其次,进行了骨干网络中的C3模块的轻量化改进。使用基于结构重参数化的C3RepGhost模块替换骨干网络中的C3模块,减少了计算量并加速推理过程。此外,构建了一个包含约18 000张多样化场景(城市街道、森林、单体火焰等)图像的大规模烟火数据集进行模型训练与验证。试验结果表明,所提出的方法在烟火检测数据集上的平均精度均值(mAP)达到0.89,相比于原始YOLOv5s模型,平均提高了约29%,检测速度达到66 fps。该方法实现了高精度、高实时性的烟火检测。与最新的YOLOv11s模型相比,改进YOLOv5s的烟火检测方法的计算复杂度降低了46%,更适合部署在边缘计算设备上。

    Abstract:

    Real-time and high-precision detection of smoke and fire is of great significance for fire monitoring and rapid early warning. Addressing the challenge that the current detection methods have difficulty balancing accuracy and real-time performance, as well as the problem of high computational complexity, this paper proposes a refined YOLOv5s smoke and fire detection method. Firstly, the Neck structure was optimized. On the basis of the original FPN-PAN architecture, it adds an additional P6 feature detection layer targeting smaller scales. Then, it enhances the network’s multi-scale feature fusion capability and improve the recognition and localization accuracy for small objects. Secondly, a lightweight modification was applied to the C3 module within the backbone network. C3 modules were replaced with C3RepGhost modules based on structural re-parameterization, effectively reducing the computational load and accelerating the inference process. Furthermore, a large-scale smoke and fire dataset is conducted and it consists of approximately 18 000 images from diverse scenes (including urban streets, forests, and individual flames) for model training and validation. Experimental results demonstrate that the proposed method achieves a mean average precision (mAP) of 0.89 on the above dataset, with an improvement of approximately 29% compared to the original YOLOv5s model. The detection speed reaches 66 fps. The proposed method realizes high-accuracy and real-time smoke and fire detection. Compared to the latest YOLOv11s model, the computational complexity of the refined YOLOv5s method is reduced by 46%, making it more suitable for deployment on edge computing devices.

    参考文献
    相似文献
    引证文献
引用本文

罗卿莉,王家旭,阚唯,曾周末.改进YOLOv5s的烟火检测方法[J].电子测量与仪器学报,2025,39(10):134-141

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-05
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告