PGS-YOLO:一种轻量高效的带钢表面缺陷检测模型
DOI:
CSTR:
作者:
作者单位:

1.内蒙古科技大学自动化与电气工程学院包头014010;2.包头威丰新材料有限公司设备处包头014020; 3.内蒙古科技大学机械工程学院包头014010

作者简介:

通讯作者:

中图分类号:

TP391.4;TN98

基金项目:

内蒙古自治区重点研发与成果转化项目(2022YFHH0019)、内蒙古自治区科技攻关大平台建设项目(2023PTXM001)资助


PGS-YOLO: A lightweight and efficient strip surface defect detection model
Author:
Affiliation:

1.School of Automation and Electrical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; 2.Equipment Division, Baotou Wei feng New Materials Company Limited, Baotou 014020, China; 3.School of Mechanical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    钢材是我国的支柱产业,其表面质量问题是影响钢材性能与价格的关键。针对带钢表面缺陷检测存在精度差、效率低、模型复杂度高等诸多问题, 提出并改进了一种轻量级的带钢表面缺陷检测模型(PGS-YOLO)。首先,引入更为灵活的PReLU激活函数,通过可学习参数自适应调整输入数据负区域斜率,从而提高模型定位缺陷的准确性; 其次,将Re-VGG融入C3,构建轻量高效的Re-C3模块,降低模型复杂度并提高计算效率,进一步地,基于GELAN网络联合设计了全新的G-GELAN特征提取-融合模块,通过融合多尺度、多层次的高级语义信息,增强模型对不同类型缺陷及复杂背景的适应能力;最后,采用轻量级的SCDown下采样操作,在减少冗余计算的同时提升特征融合的丰富度。在NEU-DET数据集上的实验结果表明,该模型相比基准模型平均精度均值(mAP)提高6.7%,达到79.9%; 参数量和计算量分别减少29.7%、27.2%,帧率提升2.7%,更好地平衡了检测精度、推理速度与轻量化之间的关系。此外,该模型在WF10-DET数据集和PCB_DATASET数据集上均表现出良好的泛化能力, 满足实际工程部署需求,预期在工程应用中具有重要推广应用价值。

    Abstract:

    Steel is the pillar industry of China, and its surface quality is the key to affecting the performance and price of steel. In order to solve the problems of poor accuracy, low efficiency and high model complexity in strip surface defect detection, a lightweight strip surface defect detection model (PGS-YOLO) was proposed and improved. Firstly, a more flexible PReLU activation function was introduced, and the slope of the negative region of the input data was adaptively adjusted through the learnable parameters, so as to improve the accuracy of the model to locate defects. Secondly, the Re-VGG is integrated into C3 to build a lightweight and efficient Re-C3 module to reduce the complexity of the model and improve the computational efficiency. Finally, the lightweight SCDown downsampling operation is adopted to reduce redundant calculations and improve the richness of feature fusion. Experimental results on the NEU-DET dataset show that the mAP of the model is increased by 6.7% to 79.9% compared with the benchmark model. The number of parameters and the amount of computation are reduced by 29.7% and 27.2%, respectively, and the FPS is increased by 2.7%, which better balances the relationship between detection accuracy, inference speed and lightweight. In addition, the model shows good generalization ability on both the WF10-DET dataset and the PCB_DATASET dataset, which meets the needs of actual engineering deployment and is expected to have important promotion and application value in engineering applications.

    参考文献
    相似文献
    引证文献
引用本文

马俊杰,张继红,王强,刘文广,吴振奎. PGS-YOLO:一种轻量高效的带钢表面缺陷检测模型[J].电子测量与仪器学报,2025,39(8):156-167

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-20
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告