基于车路云协同感知的车辆驾驶意图识别方法
DOI:
CSTR:
作者:
作者单位:

重庆邮电大学集成电路学院重庆400065

作者简介:

通讯作者:

中图分类号:

U491.2;TN98

基金项目:

国家重点研发计划项目(2023YFB2504700)、重庆市教委科学技术研究项目(KJQN202500626)、重庆市研究生科研创新项目(CYS25483)资助


Vehicle driving intention recognition method based on vehicle-road-cloud collaborative perception
Author:
Affiliation:

School of Integrated Circuits, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确获取车辆驾驶意图对自动驾驶至关重要,针对单车智能在复杂交通场景存在感知能力不足等问题,提出了一种基于车路云协同感知的车辆驾驶意图识别方法。首先,通过车路云协同感知构建网联信息交互总体框架,解析车车、车路、路云协同信息流;其次,结合双向长短时记忆网络(Bi-LSTM)和XGBoost算法,建立车辆意图识别模型,通过融合车辆历史轨迹和周围环境车辆的动态特征,提升驾驶意图识别的准确性;最后,创新性引入了Bi-LSTM的双向序列处理机制,使模型能够同时捕捉正向与反向的时间依赖关系,并在数据处理方面进行优化,提高模型在复杂交通场景下的鲁棒性。在NGSIM数据集的测试表明,与传统XGBoost模型和LSTMXGBoost模型相比,Bi-LSTM-XGBoost模型在换道意图识别中的整体识别准确率达到97.4%;模型在因果约束条件下仍保持97.2%的准确率。通过Sumo与Carla的联合仿真测试,分析了不同数量车辆对模型识别效率的影响,结果表明模型能够在100 ms内实时识别驾驶意图;在车路云协同感知道路下采集的实际数据进行测试,结果表明建立的模型具有较高的意图识别及轨迹预测能力,应用于自动驾驶,可显著增强车辆在复杂交通场景中的感知能力与适应性。

    Abstract:

    Accurately recognizing vehicle driving intentions is crucial for autonomous driving. To address the issues of limited perception capabilities in complex traffic scenarios with single-vehicle intelligence, this paper proposes a vehicle driving intention recognition method based on Vehicle-Road-Cloud collaborative perception. First, an overall framework for information exchange is established through Vehicle-Road-Cloud collaborative perception, analyzing the information flow of vehicle-to-vehicle, vehicle-to-road, and road-to-cloud communication. Next, a vehicle intention recognition model is developed by combining Bi-LSTM and the XGBoost algorithm. By integrating the vehicle’s historical trajectory data with the dynamic features of surrounding vehicles, the model enhances the accuracy of driving intention recognition. Finally, the innovative Bi-LSTM bidirectional sequence processing mechanism is introduced, allowing the model to simultaneously capture both forward and backward temporal dependencies, optimizing data processing and improving the model’s robustness in complex traffic scenarios. Testing on the NGSIM dataset shows that, compared to traditional XGBoost and LSTM-XGBoost models, the Bi-LSTM-XGBoost model achieves an overall recognition accuracy of 97.4% in lane-change intention recognition and the model maintains an accuracy of 97.2% under causal constraints. Through co-simulation testing with Sumo and Carla, the impact of varying vehicle numbers on the model’s recognition efficiency is analyzed, with results indicating that the model can recognize driving intentions in realtime within 100 ms. Further testing on a real-world dataset collected from a Vehicle-Road-Cloud collaborative perception system demonstrates that the model meets real-time requirements, exhibits high trajectory prediction capability, and enhances the perception and adaptability of autonomous vehicles in complex scenarios.

    参考文献
    相似文献
    引证文献
引用本文

李海青,雷宇铖,戴盈莹,禄盛,罗久飞.基于车路云协同感知的车辆驾驶意图识别方法[J].电子测量与仪器学报,2025,39(11):98-107

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-03
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告