改进YOLOv11的电梯乘客异常行为检测算法
DOI:
CSTR:
作者:
作者单位:

1.北京建筑大学机电与车辆工程学院北京100044;2.北京建筑大学城市轨道交通车辆服役 性能保障重点实验室北京100044

作者简介:

通讯作者:

中图分类号:

TN762;TP277

基金项目:

国家自然科学基金青年基金(51805275)、北京市属高校基本科研业务费项目(X21053)、河南省高等学校重点科研项目(23A460020)资助


The algorithm for detecting abnormal behaviors of elevator passengers with improved YOLOv11
Author:
Affiliation:

1.School of Electromechanical and Vehicle Engineering, Beijing University of Architecture and Engineering, Beijing 100044,China; 2.Key Laboratory of Service Performance Guarantee of Urban Rail Transit Vehicles, Beijing University of Architecture and Engineering, Beijing 100044,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电梯内乘客发生异常行为可能给乘客带来安全隐患的问题,提出一种改进YOLOv11的异常行为目标检测模型YOLO_LP。首先,在骨干网络中引入全新的特征提取组件跨阶段局部Transformer模块(CSP-PTM),其拥有强大的局部和全局特征提取能力,能够有效提高模型的检测精度;其次,引入上下文信息融合模块改进特征金字塔网络,此方法基于权重化思想对特征信息进行重组,有效提升了特征图的判别能力;再次,利用损失函数WIoU解决目标类别和大小不平衡的问题,进一步提升模型的精度和收敛速度;最后,采用全新设计的轻量化检测头(LDH)替换原有检测头使网络模型实现轻量化。实验结果表明,在检测电梯内乘客的异常行为时,改进的模型精度达到了90.4%,高于原始模型3.5%。此外,相比于YOLOv11n模型,平均精度均值(mAP)mAP@0.5和mAP@0.5:0.95分别提高了2.9%和2.1%,参数量和计算量分别降低了10%和17%。可见YOLO_LP模型的综合性能更优,满足在电梯轿厢内进行乘客异常行为检测的精度和速度要求。

    Abstract:

    In response to the safety risks associated with abnormal passenger behavior in elevators, an enhanced anomaly detection model, YOLO_LP, based on YOLOv11, is proposed. First, a novel feature extraction component, CSP-PTM, is incorporated into the backbone network. This component enables powerful local and global feature extraction, significantly improving the model’s detection accuracy. Next, a contextual information fusion module is introduced to enhance the feature pyramid network. This approach reorganizes feature information through a weighting mechanism, effectively improving the discriminative capability of the feature maps. Additionally, the wise intersection over union loss (WIoU) function is employed to address class and size imbalances, further enhancing the model’s accuracy and convergence speed. Finally, a newly designed LDH detection head replaces the original, resulting in a lightweight network model. Experimental results demonstrate that the improved model achieves an accuracy of 90.4% in detecting abnormal passenger behavior in elevators, 3.5% higher than the baseline model. Furthermore, compared to the YOLOv11n model, it shows improvements of 2.9% and 2.1% in mAP@0.5 and mAP@0.5:0.95, respectively, while reducing the number of parameters and computational load by 10% and 17%, respectively. These findings highlight the superior performance of the YOLO_LP model, which meets the accuracy and speed requirements for abnormal behavior detection in elevator cabins.

    参考文献
    相似文献
    引证文献
引用本文

刘伟杰,李志星,庞玉东.改进YOLOv11的电梯乘客异常行为检测算法[J].电子测量与仪器学报,2025,39(11):185-195

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-03
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告