基于轻量化改进YOLOv8的光伏阵列表面缺陷检测
DOI:
CSTR:
作者:
作者单位:

1.西华大学电气与电子信息学院成都610039;2.攀枝花学院电气信息工程学院攀枝花617000

作者简介:

通讯作者:

中图分类号:

TM615;TN06

基金项目:

太阳能技术集成及应用推广四川省高校重点实验室项目(SN240101)、成都市科技攻关计划项目(2023-JB00-00014-GX)资助


Surface defect detection of photovoltaic array based on lightweight improvement of YOLOv8
Author:
Affiliation:

1.School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China; 2.School of Electrical and Information Engineering, Panzhihua University, Panzhihua 617000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有目标检测方法在光伏阵列表面缺陷检测中精度较低且模型过于庞大,难以适用于轻量化无人机检测设备的现状,提出了一种改进的轻量化YOLOv8模型。使用跨阶段部分异构卷积网络(CSPHet)模块,在减少模型参数、提高运行效率的同时,保证了对特征的提取能力;引入部分自注意力(PSA)机制,将全局信息融入特征图中,提升网络对目标与背景的辨别能力,同时减少噪音对目标定位和分类的影响;采用跨尺度特征融合模块(CCFM)颈部结构,通过调整模型的输出通道数,降低了模型的复杂度,从而实现了更加高效且轻量化的网络架构;加入全局感知模块自注意力卷积混合(ACmix),增强模型对全局的感知能力,减少了无关信息的干扰,提高了模型的鲁棒性。实验结果表明,改进后的YOLOv8模型参数量减少37%,计算量减少27%,且检测平均精度均值(mAP)mAP@0.5提升至81.2%。显著降低了参数量和计算量,实现轻量化的同时,提升了检测精度。与其他模型相比,更加适合部署在轻量化无人机设备上,用于光伏阵列表面缺陷的目标检测。

    Abstract:

    Aiming at the current situation that the existing target detection method has low accuracy and the model is too large in the surface defect detection of photovoltaic array, it is difficult to apply to the lightweight UAV detection equipment. An improved lightweight YOLOv8 model is proposed. The use of CSPHet module ensures the ability to extract features while reducing model parameters and improving operating efficiency. The PSA attention mechanism is introduced to integrate the global information into the feature map, which improves the network’s ability to distinguish the target and background, and reduces the influence of noise on target location and classification. The CCFM neck structure is adopted, and the complexity of the model is reduced by adjusting the number of output channels of the model, so as to achieve a more efficient and lightweight network architecture. The global sensing module ACmix is added to enhance the global sensing ability of the model, reduce the interference of irrelevant information, and improve the robustness of the model. The experimental results show that the parameters of the improved YOLOv8 model are reduced by 37%, the calculation amount is reduced by 27%, and the detection accuracy mAP@0.5 is increased to 81.2%. The parameter quantity and calculation amount are significantly reduced, and the detection accuracy is improved while achieving lightweight. Compared with other models, it is more suitable for deployment on lightweight UAV equipment for target detection of surface defects of photovoltaic arrays.

    参考文献
    相似文献
    引证文献
引用本文

张彼德,王泽林,廖其龙,阎铁生,林夏,汪瑞杰.基于轻量化改进YOLOv8的光伏阵列表面缺陷检测[J].电子测量与仪器学报,2025,39(6):100-111

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-16
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告