基于改进双曲正余弦优化算法的无人机路径协同规划
DOI:
CSTR:
作者:
作者单位:

武汉轻工大学数学与计算机学院武汉430023

作者简介:

通讯作者:

中图分类号:

TN91

基金项目:

湖北省教育厅科技项目(B2020063)、武汉市自然科学基金探索计划(晨光计划)(2024040801020332)、武汉轻工大学研究生课程案例库建设项目(群体智能算法应用案例库)资助


UAV path collaborative planning based on improved Sinh Cosh optimization algorithm
Author:
Affiliation:

School of Mathematics & Computer Science, Wuhan Polytechnic University, Wuhan 430023,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对双曲正余弦优化算法(SCHO)求解无人机路径协同规划问题时搜索精度差、收敛速度慢及易陷入局部最优的不足,提出基于分段引导与动态分区改进的双曲正余弦优化算法(SDSCHO)。建立了无人机飞行的三维地理模型及威胁条件,构建了综合路径长度、障碍物威胁、飞行高度和转角的路径协同规划代价模型。同时引入混沌Circle映射种群初始化、非线性震荡转换因子、分段引导与反向逃逸优化及动态边界分区辅助位置更新策略对SCHO算法进行综合改进,并利用改进算法SDSCHO求解无人机路径协同规划问题。在多项不同特征的基准函数上与7种同类算法进行寻优测试,结果证明SDSCHO算法在寻优精度和收敛性能上表现更优。最后,通过搭建不同障碍物的三维山地模型,将SDSCHO算法应用于求解无人机单路径、多路径协同规划场景,进一步证实算法处理实际优化问题上的优越性。

    Abstract:

    To address the issues of poor search accuracy, slow convergence speed and easy fallback to local optima in solving unmanned aerial vehicle (UAV) path coordination planning problems using the hyperbolic sine-cosine optimization (SCHO) algorithm, a segment-guided and dynamical partitioned improved hyperbolic sine-cosine optimization (SDSCHO) algorithm is proposed. A three-dimensional geographic model of UAV flight and threat conditions is established, and a path coordination planning cost model is constructed that integrates path length, obstacle threat, flight altitude and turning angle. And SCHO algorithm is comprehensively improved by introducing chaos Circle mapping for population initialization, nonlinear oscillation conversion factor, segment-guided and reverse escape optimization, and dynamic boundary partitioning-assisted position update strategy. The improved algorithm SDSCHO is used to solve the UAV path coordination planning problem. On multiple benchmark functions with different characteristics, the optimizing tests are carried out with seven similar algorithms. The results prove that SDSCHO performs better in optimization accuracy and convergence performance. Finally, by building a three-dimensional mountain model with different obstacles, SDSCHO is applied to solve UAV single-path and multi-path coordination planning scenarios, which can further confirm the superiority of our algorithm in handling actual optimization problems.

    参考文献
    相似文献
    引证文献
引用本文

张小庆,孙民民,张莉,曾竣哲,宋一佳,李娜.基于改进双曲正余弦优化算法的无人机路径协同规划[J].电子测量与仪器学报,2025,39(9):137-149

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-09
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告