基于改进卡尔曼滤波和小波谱估计的动物生命体征检测优化方法研究
DOI:
CSTR:
作者:
作者单位:

1.长春理工大学电子信息工程学院长春130022;2.沈阳航空航天大学电子信息工程学院沈阳110136

作者简介:

通讯作者:

中图分类号:

TN958.1

基金项目:

吉林省科技研发计划(20220401090YY)项目资助


Optimization method for animal vital sign detection based on improved Kalman filtering and wavelet spectrum estimation
Author:
Affiliation:

1.School of Electrical Information Engineering, Changchun University of Science and Technology, Changchun 130022, China; 2.School of Electrical Information Engineering, Shenyang Aerospace University, Shenyang 110136, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    动物生命体征的精确监测对于动物健康管理和疾病诊断具有重要意义。针对动物呼吸心跳信号微弱且心跳信号易被呼吸谐波和其他噪声干扰,以及动物生理特性与人体不同且检测环境复杂多变等问题,基于毫米波雷达信号检测生命体征方法,提出改进自适应无迹卡尔曼滤波和小波联合谱估计的检测算法。通过引入噪声加权因子优化自适应无迹卡尔曼滤波对噪声的估计,保持滤波器对新观测值的敏感度;根据心率和呼吸速率信号特征的不同,使用不同的小波基提取更加纯净的信号特征,并采用谱密度估计方法计算心率和呼吸速率参量,进而实现对生命体征信息的准确估计。在29组包含牛和10组狗呼吸心跳的数据集上对算法进行验证,实验结果表明,方法可实现呼吸心跳的准确测量,呼吸频率的均方根误差为0.030 4和0.031 5,心跳频率的均方根误差为0.057 4和0.056 9,相较传统峰值捕捉算法,检测准确率分别提高了3.33%和7.26%以及3.65%和6.96%。算法具有测量精度高、抗干扰能力强特点,对生命体征检测具有较好的理论和实际应用价值。

    Abstract:

    Accurate monitoring of animal vital signs is crucial for health management and disease diagnosis. However, detecting these signals poses several challenges. Breathing and heartbeat signals in animals are weak, with heartbeats easily interfered with by breathing harmonics and noise. Additionally, animal physiology differs from humans, and detection environments can be complex. To address these issues, this study explores millimeter-wave radar-based methods for monitoring vital signs. It proposes an improved adaptive unscented Kalman filter combined with wavelet-based spectral estimation. The approach optimizes the adaptive unscented Kalman filter using a noise weighting factor, maintaining its sensitivity to new observations. It also uses different wavelet bases to extract purer signal features based on the distinct characteristics of heart and breathing rates, employing spectral density estimation for calculating these parameters. The algorithm was validated on 29 cattle and 10 dog datasets, showing accurate measurement. The root mean square errors were 0.030 4 and 0.031 5 for breathing frequency, and 0.057 4 and 0.056 9 for heart rate. Compared to traditional peak - detection algorithms, detection accuracy improved by 3.33% and 7.26% for cattle, and 3.65% and 6.96% for dogs. The algorithm offers high accuracy and strong noise resistance, making it valuable for both theoretical and practical vital-sign detection.

    参考文献
    相似文献
    引证文献
引用本文

许春生,刘云清,宋军,王琦淞,徐嵩,王尔申.基于改进卡尔曼滤波和小波谱估计的动物生命体征检测优化方法研究[J].电子测量与仪器学报,2025,39(10):52-60

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-05
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告