结合多尺度熵的SVMD-CPO-RF-AdaBoost均压电极结垢智能识别方法
DOI:
CSTR:
作者:
作者单位:

1.辽宁工程技术大学电气与控制工程学院葫芦岛125105;2.国网辽宁省电力有限公司辽阳供电公司辽阳111000

作者简介:

通讯作者:

中图分类号:

TN06;TM772

基金项目:

辽宁省教育厅科技创新团队项目(LJ222410147025)资助


Intelligent identification method of grading electrodes sediments based on SVMD-CPO-RF-AdaBoost combining multiscale entropies
Author:
Affiliation:

1.Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China; 2.Liaoyang Power Supply Company of State Grid Liaoning Province Electric Power Co., Ltd., Liaoyang 111000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有均压电极结垢超声回波检测法中结垢厚度识别不精确的问题,提出了一种结合多尺度熵的逐次变分模态分解法(SVMD)-冠豪猪算法(CPO)-随机森林(RF)-AdaBoost均压电极结垢智能识别方法。采用SVMD对超声回波信号进行分解,并根据模态选取方法筛选出有效信号成分进行重构,实现信号降噪;引入多尺度排列熵(MPE)和多尺度散布熵(MDE)作为特征提取方法,提取不同结垢厚度的均压电极超声回波信号的多尺度特征;将RF作为AdaBoost的弱分类器,构建RF-AdaBoost双集成学习模型,并通过CPO对模型参数进行优化,以实现结垢厚度的智能识别;开展了不同多尺度熵以及CPO-RF、CPO-AdaBoost、CPO-SVM等6种模型的对比研究。实验结果表明,结合MPE与MDE特征的结垢厚度识别准确率优于单一特征;所提方法能够准确识别0~0.8 mm范围内的均压电极结垢厚度,识别准确率达到了94.50%,且精确率、召回率和F1值均优于其他方法,为特高压换流站均压电极结垢提供了一种智能识别方法。

    Abstract:

    To address the issue of inaccurate sediment thickness identification in the existing ultrasonic echo detection method for grading electrodes sediments, an intelligent identification method of grading electrodes sediments based on SVMD-CPO-RF-AdaBoost combining multiscale entropies is proposed. The successive variational mode decomposition method is used to decompose the ultrasonic echo signals, and effective signal components are selected and reconstructed based on the modal selection method to achieve signal denoising. Multiscale permutation entropy and multiscale dispersion entropy are introduced as feature extraction methods to extract the multiscale features of ultrasonic echo signals from grading electrodes with different sediments thicknesses. A dual ensemble learning model of RF-AdaBoost, with random forest as the weak classifier of AdaBoost, is constructed and optimized by the crested porcupine optimizer to achieve intelligent identification of sediment thicknesses. A comparative study was conducted on different multiscale entropies, as well as six models including CPO-RF, CPO-AdaBoost, and CPO-SVM. Experimental results show that the recognition accuracy of sediment thicknesses using a combination of MPE and MDE features is superior to that using a single feature. The proposed method can accurately identify the sediment thickness of the grading electrodes sediments in the range of 0 to 0.8 mm, with a recognition accuracy of 94.50%. Moreover, its precision, recall, and F1 score outperform those of other methods, providing an intelligent identification solution for grading electrodes sediments in ultra-high voltage converter stations.

    参考文献
    相似文献
    引证文献
引用本文

闫孝姮,王治仁,赵一澄,陈伟华,张维广.结合多尺度熵的SVMD-CPO-RF-AdaBoost均压电极结垢智能识别方法[J].电子测量与仪器学报,2025,39(10):243-254

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-05
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告