恶劣环境下的道路目标检测算法研究
DOI:
CSTR:
作者:
作者单位:

安徽工程大学电气传动与控制安徽省重点实验室芜湖241000

作者简介:

通讯作者:

中图分类号:

TP391;TN98

基金项目:


Research on road target detection algorithm in harsh environment
Author:
Affiliation:

Key Laboratory of Electric Drive and Control of Anhui Province,Anhui Polytechnic University, Wuhu 241000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在智能交通系统和安防监控等领域中,目标检测技术的准确性至关重要。然而,除常规交通环境外,雨雪等特殊天气条件严重制约着目标检测的精度。雨雪天气致使图像模糊不清,极大地增加了行人、车辆等目标的特征提取难度,导致检测结果误差较大,影响相关系统的有效运行。为攻克这一难题,以 YOLOv7 算法为基础,深入研究并提出了一种适用于雨雪等特殊天气的目标检测优化方法。首先,引入广泛应用的暗通道去雾算法和基于引导滤波的去雨雪算法,对受雨雪雾影响的图像进行预处理,有效消除天气因素造成的图像降质,恢复图像清晰细节。其次,将 DIP模块与 CNN-PP模块相结合,通过弱监督学习方式,进一步挖掘图像中的目标特征,增强算法对复杂天气下目标的识别能力。大量实验结果表明,改进后的算法在检测精度方面表现卓越。相较于 YOLOv5 算法,其检测精度提升了 23.7%;与原 YOLOv7 算法相比,也实现了 11.9% 的显著增长。这充分证明了所提方法在特殊天气目标检测场景中的有效性和优越性,为智能交通、安防监控等领域在恶劣天气下的稳定运行提供了可靠的技术支持,具有重要的实际应用价值和广阔的发展前景。

    Abstract:

    In the fields of intelligent transportation systems and security monitoring, the accuracy of target detection technology is of great significance. However, in addition to the normal traffic environment, adverse weather conditions such as rain and snow severely restrict the accuracy of target detection. Rain and snow weather make images blurry, greatly increasing the difficulty of feature extraction for targets such as pedestrians and vehicles, resulting in large errors in detection results and affecting the effective operation of related systems. To address this challenging problem, this paper proposes an optimized target detection method for special weather conditions like rain and snow based on the YOLOv7 algorithm. Firstly, a widely-used dark channel de-fogging algorithm and a rain and snow removal algorithm based on guided filtering are introduced to preprocess images affected by rain, snow, and fog. This effectively eliminates the image degradation caused by weather factors and restores clear details of the images. Secondly, the Deep Image Prior (DIP) module is combined with the convolutional neural network-post-processing (CNN-PP) module. Through weakly supervised learning, the method further excavates the target features in the images, enhancing the algorithm’s recognition ability for targets in complex weather conditions. Extensive experimental results demonstrate that the improved algorithm performs excellently in terms of detection accuracy. Compared with the YOLOv5 algorithm, its detection accuracy has increased by 23.7%, and a significant growth of 11.9% has been achieved compared with the original YOLOv7 algorithm. These results fully prove the effectiveness and superiority of the proposed method in target detection scenarios under special weather conditions. It provides reliable technical support for the stable operation of intelligent transportation, security monitoring, and other fields in adverse weather, showing important practical application value and broad development prospects.

    参考文献
    相似文献
    引证文献
引用本文

黄子甜,兰康睿,郑泊文,陆华才.恶劣环境下的道路目标检测算法研究[J].电子测量与仪器学报,2025,39(10):269-277

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-05
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告