基于TCN-BiGRU-Attention模型的弹丸发射点预测
DOI:
CSTR:
作者:
作者单位:

1.南京理工大学瞬态物理全国重点实验室南京210094;2.江苏科技大学自动化学院镇江212100

作者简介:

通讯作者:

中图分类号:

TN98

基金项目:

国家自然科学基金(62203191)、国防科技重点实验室基金(2022JCJQLB06105)、江苏省高等学校基础科学(自然科学)研究面上项目(22KJB590001)、基础加强计划技术领域基金(2023JCJQJJ0357)、中国博士后科学基金面上项目(2024M754148)、国家资助博士后研究人员计划B档项目(GZB20240980)资助


Projectile launch point prediction based on TCN-BiGRU-Attention model
Author:
Affiliation:

1.National Key Lab of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China; 2.School of Automation, Jiangsu University of Science and Technology, Zhenjiang 212100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确预测弹丸发射点能够迅速定位敌方威胁源,提供关键情报支持,优化反击策略,在军事领域中具有重要战略意义。针对弹丸的发射点预测问题,提出了一种基于时序卷积网络(temporal convolutional network, TCN)、双向门控循环单元(bidirectional gated recurrent unit, BiGRU)和注意力机制(attention mechanism)相结合的深度学习模型。该模型旨在提高弹道轨迹预测精度,尤其是在复杂战场环境下,通过反向推算敌方弹丸发射点,为反击策略提供支持。首先,基于弹道方程,针对不同射角和初速度的情况,通过解算六自由度刚体弹道方程,构建了详细的弹丸轨迹数据集。然后,提出的TCN-BiGRU-Attention模型,通过引入TCN结构,捕捉轨迹数据中的长时间依赖性,并结合Attention机制优化信息加权,以提高预测的精确度。在仿真验证中,与BiGRU、双向长短期记忆网络(bidirectional long short-term memory, BiLSTM)等模型及其改进模型相比,TCN-BiGRU-Attention模型在发射点预测精度上表现显著优越,尤其在射程方向和侧偏方向的误差显著降低。通过多组仿真测试,结果表明,TCN-BiGRU-Attention模型能够在不同发射高度下稳定地提供精准的发射点预测。其中在海平面高度下,模型的射程方向误差仅为8.3 m,侧偏方向误差较小,可以有效预测并打击敌方的发射点。为未来战场中对敌方发射点预测的实施提供了理论依据和技术支持。

    Abstract:

    Accurate prediction of the projectile launch point can quickly locate enemy threat sources, provide critical intelligence support, and optimize counterattack strategies, holding significant strategic importance in the military field. This study addresses the problem of predicting projectile launch points and proposes a deep learning model that combines temporal convolutional network (TCN), bidirectional gated recurrent unit (BiGRU), and attention mechanism. The model aims to improve ballistic trajectory prediction accuracy, especially in complex battlefield environments, by backwardly inferring enemy projectile launch points to support counterattack strategies. Firstly, based on the ballistic model, a detailed projectile trajectory dataset was constructed by solving the six-degree-of-freedom rigid body ballistic equation for different launch angles and initial velocities. Then, the proposed TCN-BiGRU-Attention model captures long-term dependencies in the trajectory data by introducing the TCN structure and optimizes information weighting using the attention mechanism to enhance prediction accuracy. In simulation validation, compared with models like BiGRU, bidirectional long short-term memory (BiLSTM), and their improved variants, the TCN-BiGRU-Attention model demonstrated significantly superior performance in launch point prediction accuracy, particularly in reducing errors in both range and cross-range directions. Through multiple sets of simulation tests, the results indicate that the TCN-BiGRU-Attention model can stably provide accurate launch point predictions at various launch heights. At sea level, the model’s range error is only 8.3 meters, and the cross-range error is minimal, effectively predicting and striking the enemy’s launch point. This study provides theoretical basis and technical support for the implementation of enemy launch point prediction in future battlefield scenarios.

    参考文献
    相似文献
    引证文献
引用本文

高展鹏,易文俊,管军,袁树森.基于TCN-BiGRU-Attention模型的弹丸发射点预测[J].电子测量与仪器学报,2025,39(10):79-89

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-05
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告