基于SA-ResNet的室内指纹定位算法
DOI:
CSTR:
作者:
作者单位:

上海海事大学信息工程学院上海201306

作者简介:

通讯作者:

中图分类号:

TP391;TN98

基金项目:

国家自然科学基金(61673259)、上海市自然科学基金(25ZR1401159)项目资助


Indoor fingerprint positioning algorithm based on ResNet and improved self-attention mechanism
Author:
Affiliation:

School of Information Engineering, Shanghai Maritime University, Shanghai 201306, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    室内定位在全球导航卫星系统无法到达的传感器网络中实现基于位置的服务方面起着至关重要的作用。在无线定位系统中,基于无线指纹的定位方法只需要将待定位的设备的信号与已知特征进行比较来确定位置,因其复杂度低而在室内场景中得到广泛应用。然而, 由于室内环境的复杂多变引起的衰落和多径效应问题会导致室内信号值波动, 从而降低定位精度, 目前大部分的指纹定位方法都忽略了采集指纹的时间和空间上的信息, 为了解决这些问题, 提出了一种结合深度残差网络(residual network, ResNet)和室内指纹定位的算法模型,首先,在ResNet的残差模块中引入了自注意力机制,改进了卷积神经网络只能局部提取信号特征的问题,然后再将粒子滤波和自注意力机制结合起来,针对室内信号随机波动的问题,采用粒子滤波能够更好地适应动态环境的变化,并且用自注意力机制算法来动态调整粒子权重,使得所提出的算法模型能够更好捕捉在室内的信号特征,从而提高定位精度以及鲁棒性。最后,进行了相应的实验验证,实验结果表明,SA-ResNet室内定位算法模型的平均定位误差在0.56~0.62 m波动,具有很好的稳定性。

    Abstract:

    Indoor positioning plays a crucial role in enabling location-based services in sensor networks that cannot be reached by GNSS. In the wireless positioning system, the wireless fingerprint-based positioning method only needs to compare the signal of the device to be located with the known features to determine the location, which is widely used in indoor scenes because of its low complexity. However, due to the fading and multipath effects caused by the complex and changeable indoor environment, which will lead to the fluctuation of indoor signal values, thereby reducing the positioning accuracy, most of the current methods ignore the temporal and spatial information of fingerprint collection, in order to solve these problems, this paper proposes an algorithm model combining deep residual network (ResNet) and indoor fingerprint positioning. In order to solve the problem of random fluctuation of indoor signals, the particle filter can better adapt to the changes of the dynamic environment, and the self-attention mechanism algorithm is used to dynamically adjust the particle weight, so that the algorithm model proposed in this paper can better capture the signal features in the room, so as to improve the positioning accuracy and robustness. Finally, the corresponding experimental verification is carried out, and the experimental results show that the average positioning error of the SA-ResNet indoor positioning algorithm model fluctuates between 0.56 and 0.62 m, which has good stability.

    参考文献
    相似文献
    引证文献
引用本文

许枫翊,张颖.基于SA-ResNet的室内指纹定位算法[J].电子测量与仪器学报,2025,39(9):16-24

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-09
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
关于防范虚假编辑部邮件的郑重公告